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PROJECT DESCRIPTION

1.INTRODUCTION i-
The research on this project centered around the analysis,

development, and implementation of A;algorithms for representing a
surface which blends together two or more intersecting
surfaces. The blending surface should provide a smoother
transition than is available when simply considering the
intersection of the surfaces. The algorithms developed must be
efficient because the major portion of computing time in a solid
modeling system should be devoted to the important problems of
data representation, object display, surface analysis (ray
tracing, shadowing, etc.) and scene analysic (hidden
line/surface removal, etc.) The important features of a
blending surface are speed of computation, ability to be
incorporated into the other features of a solid modeling system
(such as hidden line/surface removal), and the visual quality of
the blended image.

"This report is organized as follows. Section I is an
introduction. Section 2 briefly describes some basic concepts
from solid modeling. Section 3 is a description of the
organization of the research, major findings, and publications.
Section 4 describes additional directions for research.
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2. SOME CONCEPTS FROM SOLID MODELING

Computer aided design (CAD) systems depend upon
representations of solid objects which use an abstract,
geometrical model rather than simply representing them as
collections of pixels displayed on a CRT screen. There are
several common methods for modeling geometric information, each
with its own advantages and disadvantages. The most common
methods are the boundary representation in which an object is
described by its boundary; constructive solid geometry, in which
an object is described by its boundary; constructive solid
geometry, in which an object is described by an algorithm for
constructing it from geometric premitives such as speheres or
boxes; and a data-structured oriented method such as octrees, in
which an object is described by the portions of space it
occupies.

Each of these methods admits additional refinements. For
example, the boundary representation of a single surface may be
given by the implicit representation F (x,y,z)=O, the explicit
representation of the form z-f(x,y) which is obtained by solving
the implicit equation (where possible and where a unique
solution exists),and the explicit parametric representation
where x,y, and z are described by a set of parametric equations.

The implicit representation is convenient for finding the
intersection of two surfaces. However, the other methods are
often more convenient for actually graphing objects.

Research during the project period has centered on the
boundary representation method using all three of the techniques
of implicit and explicit surface description.

______________ _________________________



3. SUMMARY OF RESEARCH FINDINGS

The research on this problem has taken two directions:
efficiency of computational algorithms and
development/implementation of mathematical models.

The research on the efficiency of computational algorithms
has reinforced a well-known phenomenon in computer graphics -
that very high speed cpu's, parallel/distributed processing, or
specialized graphics hardware are frequently necessary for
responsive systems. In the paper "Evaluating the Performance of
a User Interface" (Computes and Graphics volume 11 no. 2 (1987),
141-146), algorithms for evaluating performance of display
systems (especially window display and menu selection systems)
were given. These algorithms are appropriate for general
systems, with no particular emphasis on solid modeling systems.

The primary focus of "Complexity of Computer Algorithms"
(Rocky Mountain J. Math volume 17 (1987), 167-187) was general
computer algorithms. However, particular algorithms for
polynomial evaluation via look-up tables and Tchebycheff
polynomials were also presented, polynomial evaluation
algorithms are necessary for any method of graphical
representation using bicubic or similar patches. This work has
naturally lead to the study of special purpose parallel
algorithms for fast polynomial evaluation:

Publications in the area of parallel algorithms relevant to
computer graphics include "Ada Software Metric and Their
Limitations" (Proc. Joint Ada Conference, Washington, DC. (March
1987), 285-293) in which formal measuremnts of software
complexity were made, "Use of Concurrent Tasking Paradigms for
the Design of Ada Programs"(Proc 6th Annual Conference on Ada
Technology, Washington, D.C. (March 1988), 153-156) in which
formal models of concurrent/parallel programs were used, and
"Acutal Complexity of Parallel Evaluation of Low Degree
Polynomials" (being reviewed for publication) in which several
algorithms are evaluated. The first two papers mentioned in
this paragraph consider high-level algorithms while the third
paper is concerned with low level computations including counts
of memory accesses and inter-process communications. An
important result in that paper is that "efficiency" larger than
1 is possible for evaluation of cubic polynomials at multiple
points. The efficiency is defined here as

N*T(N)/T(l)

where T(l) represents the time if one processor is used and T(N)
represents the time if N processors are used. This high
efficiency is based on a pipelined architecture based on
deCastlejan's algorithm.

Comparisons between this specialized architecture and
several algorithms such as Knuth's, Horner's and a finite
difference method are also given; none of the sequential,
non-pipelined algorithms achieve efficiency of 1.
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An offshot of some of this work was two papers primarily on
education, "Experiences Teaching Concurrency in Ada" (AdaLetters
vol. 7 no. 2 (1987), 40-41) and "A Suggested Topic for the First
Course in Computer Science" (SIGCSE Bulletin, vol 30, no. 2
(1988), 40-43).

The other research direction that was considered involved
the development/implementation of mathematical algorithms for
blending surfaces. The goal of this research was to allow the
inclusion of geometric information into blending surfaces. the
initial geometric information used was the minimization of the
surface area of the blending surface.

The first technique used was based on the observation that
any such blending surface which minimizes surface area must be a
minimal surface area must be a minimal surface. Minimal
surfaces are surfaces which satisfy the non-linear partial
differential equation

zlz) zz + z (l+zx 2 )  =0) xy yy0

(assurming z is a function of x and y). For computational
purposes, the most appealing minimal surfaces for blending
purposes are those of low degree. Therefore the first objective
in this area of research was to obtain minimal surfaces of low
degree.

Surfaces of degree 3 or 4 hae been classified by Salmon as
falling into one of several classifications. The determination
of which of these low degree surfaces, if any, is a minimal
surface is a formidable computational problem. After applying
various simplifying transformations to the equations of the
surfaces, the equations were used as input to the symbolic
manipulation package MACSYMA for determining if the surface
satisfied the minimal surface equation. Results were obtained
for a few of the possible categories of surfaces; however,
problems with the disk drives of the computer prevented a
complete solution of the problem. (The computer hardware
problems have been documented in the most recent interim project
report. The disk drive problems generally made the use of large
virtual memory space impossible and thus only incomplete results
could be obtained because of the large intermediate size of
algebraic expressions given by MACSYMA before simplification).

Since only incomplete results were obtained in the search
for low degree minimal surfaces, with the implicity
representation, the project now considered the use of explicit
parametric representation. A classical result of Weierstrass
was used as the starting point - parametrizations of minimal
surfaces arise from integrating from 0 to z the functions

(l-g ) w/2
2

(l+g 2 ) w/2i

gw



where g and w are analytic functions on some domain. The
parameters are the real and imaginary parts of the independent
variable z. An important contribution here was the observation
that these analytic functions have additional degrees of freedom
which provide 6 additional degrees of freedom in the simplest
known surfaces (the Enneper's surface) and more for surfaces of
higher algebraic degree. This research is incorported in the
papers "Minimal Blending Surfaces" and "Geometric Considerations
in Blending Surfaces". Both of these papers have been submitted
for publication and are still in the reviewing process. Each of
these papers indicate the use of these minimal surfaces as
blending surfaces.

The papers have concentrated on simple problems in blending
surfaces which are sections of minimal surfaces. The additional
degrees of freedom mentioned above are used for curve fitting
and for visual appeal.



4. FUTURE DIRECTIONS

Current work is directed towards using other geometrical
constraints such as minimizing additional volume due to blending
surfaces (with some tangency information added) and towards
using methods of the calculus of variations for problems posed
in terms of surfaces which are described parametrically. The
fundamental idea is to use a Ritz method to find good
approximate solutions which are in the class of low degree
surfaces. It is expected that results will be submitted for
publication by the end of 1988.

Additional work on the determination which of the surfaces
of degree 3 or 4 as minimal surfaces will be postponed until
sufficient reliable disk drive capacity becomes available.
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ADA SOFTWARE METRICS AND THEIR LIMITATIONS

Ronald J. Leach

Howard University

a number called the cyclomatic

complexity which is basically Euler's
ABSTRACT formula applied to a graph which

A major goal of software represents the program. Kafura and
engineering research is the Henry (5] call these metrics
development of metrics which measure microlevel.
the complexity and maintainability of The second model assumes that the
programs, with a small portion of this particular modules comprising a
effort directed specifically towards program are relatively straightforward
programs written in Ada. This paper and that the major factors in program
will focus on two main themes. The complexity are the interconnections
first theme will be the development of between these modules. A primary
metrics that specifically reflect the example of this type of research is
complexity of programs in Ada. The [5] and the references indicated
second theme will be an investigation there.
of the theoretical limits of metrics The third model [3] assumes that a
as measures of program complexity in primary factor in program complexity
general, is the experience of the programmer

with other factors such as the goals
of program efficiency or storage
constraints having some effect on the
complexity.

Very few researchers consider more
1. INTRODUCTION than one of these models; Keainey, et al

There has been a considerable (6] is an exception.
amount of research activity directed We note that much of the literature
towards the development of on software metrics is concerned with
measurements of complexity of programs the coding phase of software
which have high correlation with development. Few articles explicitly
programming effort. See for example address the points made by Carrio [3],
references [1], (4], [5], [6], [7). Ramamoorthy [12] and many others that
(8]. [9]. t11], [13]. Much of the maintenance is a major portion of the
work may be broadly classified into software life cycle. CarriQ states that
three categories, each related to a many of the changes are caused by what
model of programming complexity. he calls "pseudo-maintenance" activities

The first model assumes that the which change the scope of the project by
programming complexity is the sum of adding features or changing requirement
the programming complexities of the specifications. Ramamoorthy describes a
various modules making up the sample of 282 programs with failures in
program. A typical example of this which 38.2% are caused by problems in
research [4] uses measures such as the the requirements/specification level.
number of operators and operands. One of the claims made for Ada is
number of distinct operators and that it will reduce the total amount c'
operands, etc. No special use is made complexity of software in a particu!L&
of control structures; for example, a installation by encouraging reusable
GOTO statement is treated as having an code and to some degree by acting at
operator and operand. Another example least in part as a program design
of this type is the cyclomatic measure language. In the conclusion of this
of McCabe [8]. Here the branchng and paper we will make some observations
flow of control is considered, with about these claims.
the major concern being computation of

Joint Ada Conference 1967 285 _



In this paper we consider a variety
of software metrics which are applied Table 1
to over 30 programs written in the
language Ada. The paper is organized Program Halstead McCabe Lines
as follows. In section 2 we describe
the results obtained by applying 1 7611 5 33
several metrics such as in (1],(4], 2 5148 6 51
[5], [7], (8]. In section 3 we 3 13485 4 55
consider the same data using some new 4 215985 a ill
metrics. 5 46189 8 115

Sections 4 and 5 are concerned with 6 42169 5 79
limitations of software metrics for Ad& 7 32733 4 42
programs. Section 4 introduces the 8 73171 7 72
concept of a time-varying metric. Such 9 13537 14 91
metrics have the goal of measuring that. 10 35255 7 74
portion of a program most likely to 11 19162 8 58

.change because of a change in program 12 12832 2 45
specifications. The metrics are also 13 5923 3 39
evaluated on the same data set. 14 16476 5 67
Relevance of such metrics and the 15 47071 2 81
associated statistics to the software 16 37405 5 50
life cycle is discussed. 17 2482 3 36

Section 5 of the paper Includes a 18 19826 4 68
discussion of inherent complexity of 19 2145 3 41
programs and the resulting limitations 20 1572 3 65-
of software metrics. 21 3381 1 32

Section 6 provides a summary of the 22 10806 3 39
results obtained and some suggestions 23 160794 3 91
for future work. 24 100991 12 92

25 47611 6 72
26 44781 7 66

2. APPLICATION OF EXISTING METRICS 27 14136 4 68
28 6441 4 48

This paper has the twin goals of 29 64893 24 236
developing software metrics for Ada 30 5159 3 50
programs'and describing the limitations
of such metrics. In this section we
discuss the development of metrics.

When developing new metrics, it is 3. ADA-SPECIFIC METRICS
instructive to examine the behavior of
some of the classical metrics on a set In the previous section we saw that
of sample programs. The sample for a large collection of Ada programs,
programs were selected at random from a there is low correlation between the
variety of textbooks on Ada; they range frequently used Halstead and McCabe
in length from 33 to 236 lines of metrics. Clearly neither metric
code. We emphasize that this is not a completely measures software
formal experiment. Instead, we complexity. Thus we need to examine
consider the examples givan here as metrics providing "orthogonal" views of
providing experience in the collection a program. Such metrics will use some
of data for the development of more of the ideas of the interconnection
complete metric* such as those ideas of (5] as well as (7].
considered in the next section. We consider a collection of Ada

With these caveats in mind we language features whose presence nay
present the data in Table 1 for these explain the wide variation between the
programs. We nee the notion of various metrics. These features are
operator and opm, and as described in grouped by their perceived effects on
(4]. The correlation between the language level, programmers' specific
Halstead and McCabe metrics for these abilities, portability, and
programs is a low 0.139 explaining only verifiability. We consider only those
372 of the variance. A graphical view features that are specific to Ad& and
of these metrics is given in figure 1 not available in other languages such as
at the end of the paper where they ere Pascal. The reason for this is that an
compared with'a new Ada metric. Ada program written dnly using

Pascal-like features can have its
software quality measureed by obvious

2 Joint Ada Confernoe 1987



translations of Pascal metrics (assuming correctness in a particular program is
that there are adequate metric* for difficult to test without exhaustive
Pascal programs). consideration of all cases of

instantiations.
A. FEATURES DUE TO LANGUAGE LEVEL.

1. Name Equivalence B. FEATURES WHICH INFLUENCE PROGRAMMER
UNDERSTANDING.

For example, the declarations
A,B: INTEGER; 1. Tasking
C: INTEGER;
Type DATATYPE is new INTEGER; The ability to specify operations
D: DATATYPE; which need not be executed sequentially
Type INT TYPE is now INTEGER; is one fo the major features of Ada.
E: INT TYPE; The writing and debugging of programs

allow A,. or C to be considered the involving tasks is complicated by the
same type, but D is considered a fact that some errors will become known
different type. This has no effect on only when certain orders of statement
McCabe's metrics. There is no effect execution are followed and these
on Halstead's if we consider only particular orders often occur long
executable statements and increase the after the testing phase.
number of lines of code by 6. Tasking is also one of the few

The variables A,B,and C are all factors present in all phases of the
declared as being of type INTEGER. program life cycle from specification
Writing the declaration in this form to maintenance. Therefore it must be
require more source code text than does included in metrics which are to be

A,BC: INTEGER applied at various times during the
However If it is accompanied by a life cycle. In addition, tasking used
comment explaining the significance of to improve performance by splitting
the variable C, then the effect of this execution of processes onto many
longer form of the declaration is to processors should probably change when
slightly increase readability of the the number of processors available in
code and hopefully to slightly reduce any implementation of the software
program complexity. increases. This facet of tasking

The declaration of D as being a therefore will also affect the
distinct type (called a derived type in portability of code somewhere during
Ada) allows storage of D and allows the life cycle.
many operations to be performed on D. Because of the complexity
However, It does not allow operation# introduced by tasking, we must treat
such as the addition of a variable to arrays of tasks separately from the way
type INTTTPE to a variable of type we treat arrays of data objects.
DATATYPE. This actually reduces the Declaration of an array of data objects
complexity of the program since it does not change any measurement of
precludes "accidental" errors such as software based only on executable
adding a Zip Code to a Social Security statements. An array of tasks provides
number and expecting a sensible result. far more opportunity for errors in

Note that this phenomenon does not interconnection between two tasks than
occur in a language with only do one or two tasks. Thus the number
structure equivalence" of names. In of elements in an array of tasks has a
such languages, addition of A and D is great affect on any reasonable Ada
a legitimate operation, software metric.

An even worse situation is caused
2. Generics by the Ada language allowing the

creation of pointers to tasks. Each
Generic packages provide an additional task ircreases software

opportunity for data abstraction. As complexity. However, the number of
such, they represent an opportunity for tasks cannot be determined until after
the program to represent an algorithm execution of the program. We return to
more clearly. Thus the effect of this point later.
"generics" will be to reduce the 2. Subfeatures of tasking
complexity of the software during the Many of the problems occuring in
design and coding phase since among software which allows concurrency are
other things they reduce the number of caused by synchronization of
subroutines and lines of code of the processes. With this in mind we
program. However, as was pointed out in observe that the reserved words
(1], generics form a template whose select". "accept" "entry", "delay"
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"abort" in the context of tasks must 3.Interfaces to other languages
increase the complexity of the software
(nnd therefore any complexity metric). DuLa abatractiost and information

hiding are major features of Ada.
3. Private declarations Clearly any software interface to

another language decreases the

Declarations using the work usefulness of these features. Consider
"private" tend to reduce complexity in the following example from the Ada
interconnection metrics since they Reference Manual (10, p. 2171:
minimize the interface between
components of the software. "Limited package FORT-LID is
pr iveto* declarations further restrict function SQRT (X-FLOAT) return FLOAT;
the interface. The presence of such function EXP (X:FLOAT) return FLOAT;

declarations reduces complexity, private
pragma INTERFACE (FORTRAN, SQRT);

4. Mode restriction pragme INTERFACE (FORTRAN, EXP);
end FORT-LIB;

Restricting the mode of parameters
to be "in", "out", or "in out" in This use of the pragma INTERFACE
procedures and "in" only in functions decreases portability because it uses
reduces side effects and thus reduces languages that may not be available in
complexity, all installations and becasue the

capability for interfaces to other

S. Exception handling, languages need not be made available in
all implementations of Ada (10, p.

The factors that cause exceptions 2171. Clearly, this increases
are present In every substantial complexity.
software project. Exception handling
facilities in Ada provide a clean way 4. Machine code insertions
of treating exceptions. The effect on
software metrics is to increase the Clearly machine code in an Ada
lines of code, operators and operands program eliminates portability of that
and thus increase comSplZity. However, section of the program that inlcudes
exception handling is probably the the machine code. Some machine code
simplest way to write certain segments -can be reorganized by the presence of
of code and thus the effect on a metric the pragma INLINE and the use of the
should be relatively minor. predefined library package MACHINE-

CODE.
C. FEATURES WHICH INFLUENCE Another source of machine dependent
PORTABILITY. code is he use of specific locations.

Examples of these are the for-use,

1. Packages at-mod and use-at constructions.
Examples are:

Packages encourage modularity which for RIGHT MASK use #001#
is of vital importance in structured (using a bit pattern to mask input
design. Clearly a piece of software
can be ported to another installation for example)
only, if all of the packages called by FORFAILURE SIGNAL use at 8#40410
the software are also ported and there (using an octal representation
are no name conflicts with existing of a port)
packages in tho new installation.

and
2. Generics

for PIXEL STORAGE use
Generic packages encourage record at mod 4;

portability by requiring only X at SOME I VALUE;
instantiation to work. However, Y at SOME-Y-VALUE;
considerable care must be given to the COLOR at S E COLOR;
testing of generic packages. since each INTENSITY at SOME LEVEL;
instantiation of a package for a new end record;
data type should be tested like a new This last example might be used in a
package. graphics program in which we intend to

move a block of pixels and wish to
speed up their movement by aligning
with byte or word boundaries.

288 joint Ada Conferce 19?



D. FEATURES WHICH INFLUENCE storage, addition or delecton of
VERIFIABILITY processors in a distributed system,

demand for a more "friendly" user
1. Named parameter association interface, etc. Changing performance

requirement specifications are even
Consider a generic package more prevalent in a model in which

generic prototypes are developed rapidly with
1,Y: FLOAT: -0.0; successive modification of the
package POINT is ... prototypes leading to deliverable
package FIRST POINT is new POINT products. The evolution of Ads

(3.7.2.1); software projects is greatly influenced
package SECOND POINT is now POINT by factors peculiar to the Ads milieu.

(I .> 3.7), These factors are: standardization of
Y .> 2.6); the language before the advent of

In the package SECOND POINT, the named usable compilers, rapidly evolving
parameter association tells us about compiler performance (although
the names of the parameters as well as compilation speed and quality of code
their values. The other package is still not at a very high level
describes the values by using compared to more mature languages), and
positional notation. Named parameter lack of experienced Ads programmers
association tends to decrease (because of the newness of the
complexity when used both in this language).
context and in the context of fields of It is clear that metrics used only
a record. during the coding phase are only an

2. Global variables, approximation to any quantitative
Use of such variables often evaluation of the software that will

increases complexity because the eventually be produced. A metric
availability of a shared variable to applied only at one point in the life
two tasks means that neither can assume cycle can only suggest portions of the
anything about the order in which the code that are especially complex. Such
operations of the various tasks are metrics are, by their nature, incapable
performed except at synchronization of measuring those portions of the code
points. The syntax for shared which are inherently complex. Note
variables is also that the goals of such metrics is

pragma SHARED (vartname); to aid in the development of code of
Shared variables increase complexity minimal complexity, regardless of the
since they increase opportunity for changing requirements during the useful
errors. life of the software project.

The nature of the time variation of
4 . TIME VARYING METRICS metrics is the theme of this section.

We intend to return to the topic of
In the previous sections we evaluating and fine tuning such metrics

discussed some standard metrics and the in a future paper.
results of their application to a large With these suggestions in mind we
set of Ada programs. The metrics used will use the following terminology.
all assign a complexity measure to MS - the metric used at the
programs and to their component specification stage
modules, with the primary purpose being MD a the metric used at the
the early identification of those design stage
programs or modules which are most MC - the metric used to evaluate
likely to require changes in the completed code (In the case of a
development stage. We now consider the developing system with many prototypes,
behavior of metrics when they are the metric may' be applied to each
applied to programs during the entire prototype).
life cycle rather than restricting MM - the metric used during the
attention to the development phase. maintenance cycle.
Note that any metric for Ada programs It is natural to ask if the same
must take into account the factors metric can be used at each one of these
mentioned in section 3. four stages in the development of Ada

Consider the standard model oZ the programs; the answer is a resounding
software life cycle. The "maitiennnce no! Among other things, Ada is not a
phase" is often caused by eith,r formal specification language since
porting code to another machinn nr by specifications cannot be executed.
changing specifications to req,' r-! (Historical note - executable
faster execution, more efficie,)i: use of specifications were considered in
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several of the interim reports on MM - MC+NUMBER OF PACKAGES +
Ada). Since most software metrics 4 * NUMBER OF TASKS +
assume that language level is a major 5 * (NUMBER OF FOR USE) +
factor in the metric, there cannot be a 3 * (NUMBER OF BINARY + NUMBER OF OCTAL
suitable measure MS' unless the + NUMBEROF HEYIDECIMAL )
specification language is fixed. For + NUMBER-OF AT MOD
siaplicity, we assume that the for the metric MM.
specification language is English and Consider for example the problem of
that the metric MS is simply defined by porting software which allows a maximum

of 5 independent tasks from a system
MS= number of tasks. with 1 processor to a system with 10

We are assuming that the number of processors. It is likely that such a
tasks is known and fixed at this wealth of resources will cause a major
stage. Any dynamically allocated tasks change in the software if performance
are assumed to be created because of improvements are not as expected.
performance or coding criteria in later
stages of software development. 5. LIMITATIONS OF ADA SOFTWARE METRICS

Thus the measure at this point is
basically an "interconnection metric" The following seems to be the
since it is based on the number of minimum requirement used for any
separately executing components of the software metric.
program. Definition. A software metric m

The next metric MD is more for a language L is a function from the
interesting, because many people set of programs or modules written in
consider Ada to be a reasonable design the language L to the non-negative real
language. numbers.

We assume that MD is a metric which Note that this definition says
should accurately reflect the type of nothing about the input to a metric
code which will be written during the being a correct program or module.
coding phase. Thus MD and MC should Note also that metrics often have
have high correlation. In this paper additional properties. For example,
we assume that ND=NC. Halstead's metric [4] has the property

The metric MC used at the end of of additivity; that is, if A and B are
the coding stage (or at the end of the disjoint modules, then
coding stage for each prototype) m(A+B) n m(A) + m(B),
reflects the standard use of metrics, and this is independent of how A and B
That is, MC is a static measure of the are interconnected. Here "A+B" means
code. Its use here is to analyze why the joining of A and B in a single
certain segments of the code were hard program.
to write and to predict and avoid The cyclometic number e-n+p defined
problems which will occur during the by McCabe (8] requires a slightly
maintenance stage. Our emp~rical different analysis. If we assume that
evidence (see the graph in Figure 1) the start mode of B is identified with
supports the metric MC defined by a node of A and that no other nodes or

MC - 2 *NUMBEROF TASKS +3 *NUMBER_ edges are common, then the number of
OF EXCEPTIONS + 4 *(NUMBER OF ENTRY + nodes of A+B is one less thet the sum
NUMBER OF ACCEPT +NUMBER OF SELECT) + of the number of nodes of A and the
NUMBER OF SHARED VARIABLES + number of nodes of B. Using an obvious
NUMBER-OF-PRIVATITYPES - notation,
(NUMBER OF MODES IN + NUMBER OF n(A+B) - n(A) +n(B) -I.
MODES IN OUT + NUMBER OFMODE7SOUT)/2 • Also, the number of connected

The final metric MM is easier to components of. A,B, and A B are related
understand. Since each metric has the by
dual goals of measuring the current p(a+B) - p(A) + p(B) -1
product and predicting problem in the and hence we have
future, MM is concerned only with m(A+B).- m(A) +m(B).
problems in fixing errors, improving It is easy to see that this is true
performance, adding functionality, and even if A and B have other nodes or
in the code being ported to other host edges in common or if A and B have no
systems. The last three of these nodes in common. In any event,
reflect changes in the design McCabe's cyclomatic number satisfies
requirements of the software. At this the additivity condition
time we suggest the equation
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m(A+B) O i(A) + a(B). a. The domain of ma is the set of
What about interconnection all possible specification language

metrics? Such metrics assume that the (which may be English, formal
primary factor influencing complexity specificaiton language with executable
is the interconnections between code, or something in between).
modules. The number of interconnections b. The domains of md, mc and me
increases exponentially as the number are the set of all possible Ada
of modules increases. Hence the programs (assuming Ada is the design
additivity condition is replaced by the language).
condition C. Each of the metrics md, mc, and

m(A B)> m(A) + m(B) am is the sum of two non-negative
where "A+B" nov represents a program functions. These functions are the
with modules A and B (which of course P-measures which represent the metric
may also be composed of other applied only to those portions of the
modules). Thus these metrics fail to code that are direct translations of
have the property of "subadditivity", Pascal programs and the A-functions
much less additivity. This is a major which represent the complexity of the
reason for the lack of a well-defined code caused by Ada-specific features
theory of such metrics for general use not present in the language Pascal.
in evaluating software written in most
programming languages. Defining a metric scheme as a

The situation for Ada software collection of four metrics seems
metrics is somewhat different from the somewhat redundant at first glance.
situation for general programming Much of the research in software
language metrics. As was indicated in etrics involves a search for a single
section 3, the interfaces between measurement to be used at all times.
component modules are tightly However, Dunasmore and Gannon (3]
controlled by the standard interfaces, performed an interesting experiment in
such as restricting modes in functions the use of global variables and formal
to "in". "out", or "in out". For parameters in communicating between
separate packages, there are no common varfous modules. They observed that
variables unless the common variables global variables tend to decrease
are declared by the pragme SHARE in errors during program development but
each package. Thus Ada metrics when that formal parameters tend to decrease
applied to structured code have the errors during the maintenance phase.
additivity property that the measure of Their results support the need for
a program composed of two separate different metrics during different
program units is equal to the sum of% phases of the life cycle.
the measures of the two program units. Recall that in section 3 we
Hence it is reasonable to suspect that observed that any metric for Ads
there is some mathematical structure programs must consider the typing,
underlying the theory of Ada software tasking, packages, modes, generics,
metrics of the type presented here. exceptions and other special features

It is important to distinguish the of Ada. Clearly these aust be present
factors that are to be measured by a in the A-function since they are not
metric. Such factors include the available in the language Pascal. We
language level, underlying complexity are now ready to state and prove the
of the problem, experience and ability major result which shows the-limitation
of the programmer. relative frequency of Ads software metrics.
of expected errors in certain code
segments, and degree of difficulty in
implementing the changes in the next THEOREM It is impossible for any
phase of the software life cycle, metric m applied to any stage of the
Metrics are applied to code for the software life cycle of Ada programs to
purpose of evaluating the code and be able to predict the complexity of
predicting those portions which will be the code. In fact, given any Ada
troublesome in the next phase of the software metric scheme, there is a
life cycle, program E for which each of the metrics

With these points in ain4. we make in the scheme ha-s a fixed value when
the following definition. We define an applied to the code but the measures
Ada software metric scheme to be a applied to E during execution can grow
quadruple (an. ad, me, mm) of functions arbitrarily large.
called metrics whose range is a subset
of the set of real numbers and which
satisfy the following conditions:
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Proof. Consider a program E which continue into such metric schemes and

involves code of the form their validity as predictors of
task type TTYPE is problems with programs at various

* .points in the software life cycle.

type TASK POINTER is access TTYPE; The second main theme of this paper
was the theoretical limitations of such

Any metric applied to the program E metrics. We proved a theorem

at any stage in the software life cycle indicating that,.no metric applied to

will assign a fixed non-negative number static code can predict code complexity

to E. However, tasks can be spawned for programs which change their

dynamically at run-time. The number of complexity at runtime. The proof of

tasks, mud hence the number of the thorem is based on a particular Ada

interconnections between tasks, can be concept. Future research in this area

made arbit.rarily large at run time. will concentrate on extending this

Hence any complexity measure, when theorem to determine which other

applied to the code-data pair during properties of Ada programs cause

runtime, can be made arbitrarily large similar difficulties with Ads metrics.

even though the value of the measure on Representing metrics as the sun of

K before run time was fixed. P-metrics (for Pascal-like program
features) and A-metrics (for program
features available in Ada but not in

This theorem shows that it is Pascal-like languages) is a first step

impossible for any metrics which can be in this research.

applied to every program at any stage

of the life cycle to be able to Acknowledgement
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ABSTRACT Abstraction and information hiding are

A major feature in the design of Ada was major techniques of software engineering that

the high level support of concurrent tasks. Con- are used to address some of the problems with

current tasking is an essential feature of embed- software. Indeed, the relative ease in which

ded systems in most environments. In this information hiding and abstraction of data are

paper we examine the state of Ada education in implemented in the Ada language is a major

the support of concurrent tasking. The tasking reason for the success of Ada. It is clear from

examples are compared to formal models in the success of these language features that there

CA.R. Hoare's CSP (Communicating Sequential is a need for formalism in the area of concurrent

Processes) system. The resulting information is programming in Ada.

compared with actual use of tasking programs in Perhaps the most common paradigm for
the Ada literature and in industry and govern- design of programs involving concurrent tasks is
ment. Particular attention is paid to the treat- C. A. R. Hoare's Communicating Sequential
ment of non-determinism in tasking programs Processes (CSP). It is reasonable to ask if
and in formal models. Hoare's abstract models of CSP involving con-

currency are applicable and effective tools in
program design. Ada was originally intended
for use with embedded systems and concurrent

INTRODUCTION tasking and to incorporate principles of good
In order to maximize the effectiveness and software engineering; it is appropriate at this

efficiency of a program, a programmer must point to examine how these two ideas work

begin the program development with a good together in practice. This research was con-
program design structure. Programs are made ducted to see if the current state of use of

up of several types of building blocks. Pro- abstract models of Ada programs involving con-

grams without concurrent execution of tasks use current tasking is sufficiently well-understood to
the standard sequential building blocks of pro- be used in providing a basis for Ada program
cedures, functions, and modules. Programs design. Thus this research represents an assess-
involving concurrent execution use these build- ment of how well the use of tasking and formal
ing blocks and the additional block of a task models is supported in the existing Ada educa-
which is usually a collection of the sequential tional community.
building blocks. The use of concurrent tasking The first step in approaching this problem
in programs greatly increases the potential for was to collect data. The data was initially col-
error in programs and thus causes great lected from the published literature of Ada pro-
difficulty during all phases of the software life grams including textbooks, lecture notes, and
cycle. Errors which occur at many phases of conference proceedings. We chose 17 texts
the software life cycle and costs which increase from the library; the selection criterion was
exponentially are major features of the actually having the book on the shelf and not in
"software crisis". It is clear that the current circulation at the time that the data was gath-
"software crisis" will get even worse since most ered. We feel that this is a representative sam-
of the existing problems have been with systems pie of the use of tasking in the existing Ada
which do not involve much concurrent execu- textbook literature. Programs which involved
tion. tasking were extracted and examined to see
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ered. We feel that this is a representative sam- such programs. A preliminary experiment
pie of the use of tasking in the existing Ada involving the examination of 12 student pro-
textbook literature. Programs which involved grams using concurrncy indicated that the
tasking were extracted and examined to see sequential execution of tasks predominated, with
which, if any, of Hoare's models could be 8 uses of the P;Q model of sequential non-
applied to the programmers' method of execut- communicating tasks, 2 with parallel execution
ing the task or tasks. The results were tabulated of non-communicating tasks (PIIQ), one with the
to see which models were applied in these pro- (*(*(*P;Q))) model of repeated sequential tasks,
grams. and one with the P;*Q model of task followed

The textbooks examined fall into two by repetition of a sequential task. Some of the

categories: limited amounts of tasking (includ- programs obtained from students followed the

ing none at all) and considerable emphasis. A P;Q model which describes the execution of two

total of 819 programs from all textbooks were processes or tasks which are executed sequen-

examined, with only 114 or 13.9% having any tially. Some observations about the difficulties

concurrent tasks. We note that most of the pro- encountered by students in the development and

grams involving tasking (36) were found in a execution of these programs was made in [14].

single reference [7]. Of the programming sam- An additional data set was obtained from
pies obtained from textbooks in the first the existing published non-textbook literature.
category, there were only 32 programs involving This data was obtained from the newsletter
tasking out of a total of 730 or 4.3%. The P1Q AdaLetters (including its predecessor), proceed-
model of concurrent execution of tasks with no ings of several Ada conferences, the Journal of
communication between the tasks was found Pascal, Ada, and Modula-2, materials from a
most often, with a total of 14 instances, of variety of Ada short courses, and the Ada Repo-
which 12 involved only two tasks. The repeti- sitory. Again in this case, few of the sample
tion of tasks, which is denoted abstractly as *P, programs supported the more complex models.
was the next most frequently found, with seven The most common example of Ada task-
instances. The next most frequent model occur- ing programs was the consumer-producer prob-
ring is the P;Q model in which the tasks actu- lem which was presented in various forms.
ally are executed in order, a total of 6 instances. Many texts, especially [7], gave several different
Hoare distinguishes 29 distinct models for task- solutions to this problem. In some instances,
ing involving two tasks; only 8 of them or there were two relatively different coding solu-
27.5% are represented in the texts. In table I tions to the same abstract model, even though
below, we summarize our search of the the text- the two models appeared to have the same CSP
book literature, some examples of student pro- representation. We intend to pursue this subject
grams, and sample programs that are available in future work.
in the non-textbook Ada literature. Note that The remaining data was collected from a
we show the number of tasks in each example s ma inig ata sed fromsr
and therefore do not quite agree with all of small set of programs actually used in industryDHore's categories, since Honre only lit h and governmenL Some of these programs make
possibilities for the execution of two concurrent elaborate and extensive use of tasking while ofpossibilties fr e excistin of twossit e nt course others do not. The data collected istasks in his explicit listing of possibilities, incomplete at this point because of the difficulty

The textbooks [5) and [7] had much more in obtaining samples of actual proprietary code.
emphasis on concurrent programming as the We do not expect that this data will ever be
titles "Concurrent Programming in Ada" and complete or that it will represent the precise
"Parallel Programming in ANSI Standard Ada" percentages of use of Ada tasking in Ada pro-
would indicate. There were a total of 89 pro- grams. Instead, we consider it as an example of
grams presented with tasking evident in 42 or how Ada tasking paradigms are used in a few
51.7%. Here the range of programs is much hopefully representative Ada applications.
wider including examples of (PIQ)*, $$(P sub 1
liP sub 2 ..lIP sub n )* $$, PIlQ with Q of the
form RIIS;T and several other models.

The next set of data was obtained from
student programs. The intention here was to
measure the level in which tasking is used in
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TABLE 1: READILY AVAILABLE INFORMATION ON TASKING. NOTE THAT SOME OF
THE DATA COULD ALSO BE CONSIDERED AS MORE COMPLICATED CSP MODELS

NUMBER OF OCCURRENCESCSP MODEL BOOKS BOOKS WITH TASKING STUDENT PROGRAMS LITERATURE

PlIQ 12 18 2 8
P[] Q 1
oP 7

P;Q 2 2 7
b*P 1
P/ 1 3
x:A->P(x) 1
A->P 1 2
"P;Q 1
PIQIIR 2 8 3
P.Q;R 1
P//QIIR I I
POQOR 1
PlIQIIRIIS 1 2 4
P11*Q I

(PIIQIIR)* 1
(PIIQ)* 3
P1 .. 'Pn 2
(PI .. Pn)* 1
((Q//Pl) ..ll(Q//Pn))* 2
TIMED TASKS 2

SUMMARY AND CONCLUSION gramming must be increased. This

It is clear that the quality of information instruction should be done over a variety
available to beginning and intermediate Ada of courses so that students see these ideas
programmers and designers about tasking is in a number of contexts.
quite limited and does not address the full range 2. Textbooks in the language Ada must
of potential tasking uses. The actual problem is include a wider variety of tasking pro-
much worse than this because Hoare's CSP grams including more of Hoare's CSP
models do not allow for time constraints such as models. While the amount of tasking
delays and fixed waits. Such factors are criti- information need not be as much as in [7],
cally important in situations such as the FAA it must be increased in order to make
control system or indeed in any system that sophisticated knowledge of Ada tasking
must perform in real time. available to as many students as possible.

It is well-known that even experienced 3. Continuing education for the profes-
programmers have considerable difficulty in sional should include a comprehensive
writing programs which involve any degree of study of tasking in Ada. This is not
concurrency. We recommend the following appropriate for the first introduction,
solutions. which should be limited to the fundamen-

1. At the preliminary level of education; tal features of the language and Ada
that is, in the undergraduate and graduate software engineering with only a brief
programs of colleges and universities, the introduction to tasking. Second courses
amount of instruction in concurrent pro- should give views of many abstract

models of tasking by means of many
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different examples. We note that this is 12. C.A.R. Hoare, Communicating Sequential
being done at Pennsylvania State Univcr- Processes, Prentice-Hall, 1985.
sity (Capitol Campus) and at Computer 13. Katzan, H.Jr., Invitation to Ada, Petrocelli
Science Corporation (Moorestown). Books, New York, 1984.
4. In the absence of high quality educa- 14. Leach, R., Experiences Teaching Con-
tional opportunities or having existing per- currency in Ada, AdaLtters, 1987.
sonnel already well trained in Ada task. c nkAd, ad 1.
ing, management must choose between 15. Mohnke , onL. and B. Mohnkern, Applied
using special expertise from outside the Ada, Tab Professional and Reference Books,B~lue Ridge Summit, Pennsylvania, 1986.
organization and restricting the tasking to
the simple models supported by most of 16. Pyle, I.C., The Ada Programming Language,
the existing texts. Prentice-Hall, Englewood Cliffs, New Jersey,
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ABSTRACT

We consider several sequential and parallel algorithms for the evaluation of
polynomials of low degree, with particular emphasis on those that are used frequently
in computer graphics. A complete accounting of computation times for the speed-up
and efficiency of these algorithms is reported. The results are compared to standard
e-timates of these quantities for single and multi-processors using classical complexity
theory. A simulator which is configurable to several parallel architectures is used to
provide validation of the results obtained.

1. INTRODUCTION

It has been clear for several years that major improvements in execution time for many programs

will require extensive use of parallel processing. Many papers have been written exploring the compu-

tational complexity of algorithms which are developed for parallel computation. The complexity is usu-

ally measured on some abstract machine which has certain properties that are assumed to be somewhat

realistic. In general, these theoretical results do not have a particularly good correlation with observed

execution times on actual hardware realizations of these abstract parallel machines. The paper [4] is a

typical example. Typically the quality of a parallel algorithm is measured by two quantities called the

efficiency and the speed-up. Speed-up is defined by the formula
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S(p) = T(1)T(p)

while efficiency is defined by

E(P) = S(p)/p.

where p denotes the number of processors. These measures are well-defined for any given algorithm

provided that all of the times involved in the computation are taken into accounL Typically, the "best"

sequential algorithm is used to compute T(I). The articles [2], [51, and [9] present various views of

what the actual speed-up of an algorithm is. In [9], Parkinson claimed that a particular parallel algo-

rithm for adding two vectors has efficiency greater than 1. This analysis was disputed by [2] and [5],

where the authors indicated that certain implicit assumptions were made by Parkinson. They described

other factors involving actual performance on any hardware realization of an abstractly described paral-

lel computer.

The controversy over this simple algorithm suggests that some of the classical results of arith-

metic complexity theory be reviewed from the point of view of the actual times needed for performance

of needed operations in an arithmetic computation. In this paper we are concerned with the evaluation

of polynomials. We will consider a number of algorithms for evaluation of low degree polynomials and

obtain estimates of run time speed using techniques of classical arithmetic complexity theory. The

actual numbers of memory accesses, register moves, index changes, arithmetic operations , and inter-

process communications will be given and will be translated to actual efficiency and speed-up for a

number of parallel architectures.

We restrict our attention to low degree polynomials in this paper for several reasons. First, the

actual time costs of all of the operations are apparent in low degree polynomial evaluation. Second, our

intention was to compare actual to theoretical results. It is easy to do this for low degree polynomials.

Finally, real-time graphics, which is one of the most computationally intensive fields and is a typical

target for parallel computation, is concerned almost exclusively with the evaluation of cubic polynomi-

als or quotients of cubic polynomials when solid objects are displayed. For additional information, see

the reference [3] from which the following discussion of the use of low degree polynomials in computer

graphics is taken.

I I II I I " I
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Low degree polynomials apear naturally in computer graphics in the following context. Suppose

that the graph of some surface is to be displayed. The surface is approximated by a collection of

patches which are defined by a collection of quadruples of points. These quadruples may represent

points on the surfaces or some combination of points on the surface or points of tangency, or points that

are chosen to represent the smoothness of the surface without lying precisely on the surface. The patch

is given in parametric form x = x(uv), y = y(usy), z = z(uv), where u and v are restricted to lie in

some region which is almost always the unit square 0:< u , v 5 1. The functions x(u,v), y(u,v), and

z(uv) are either products of polynomials of degree at most 3 or are quotients of such products. The

reason for this is technical and involves having exactly the minimum number of degrees of freedom to

allow for smoothness when two patches are joined.

The graph of the surface is approximated near the patch by the following algorithm.

FOR each patch DO
/* evaluate the patch for curves of constant u *
for (u = 0; u 5 I; u = u + increment)

move.abs_ 3(x (u,O), y (uO), z (uO));
for (v = increment, v 5 I, v = v + increment)

line_abs_ 3(x (u,v), y (u,v), z (uv));

/* evaluate the patch for curves of constant v */
for (v = 0; v < 1; v = v + increment)

move-abs_- 3(x (Ov), y (Ov), z (O,v));
for (u = increment, u 5 1, u = u + increment)

lne -abs_ 3(x(u,v), y(u,v), z (u,v));

Each patch requires 2(increment)-2 evaluations of the functions x(u,v), y(u,v), z(u,v) for a total

of 6(increment)-2 evaluations of functions. A typical realistic picture in computer graphics may contain

between 500 and 2000 or more patches and may require values of increment of .001. This corresponds

to 1.2* 1012 possible function evaluations of the three component functions x, y , and z. Clearly a crit-

ical factor is the speed in which the functions can be evaluated. More importantly, the large number of

computations needed to solve this problem strongly suggests a need for some of the computations to be

performed in parallel.
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2. SOME STANDARD RESULTS FROM COMPLEXITY THEORY

We recall a few results from classical arithmetic complexity. Let n be a positive integer and con-

sider the polynomial

p (x) = ao +a ax + ...ax*

Suppose that we wish to evaluate this polynomial on a single processor. To evaluate p(x) for a given x

requires the computation of x1 and all lower powers of x. The most obvious algorithm requires 2n - I

multiplications and n additions. A faster procedure is Homer's method where we write

p(x) = (...((a.x +a._I)x + a..2)x...) + ao.

This requires n multiplications and n additions. Knuth [6] gives an algorithm due to Belaga which

requires [2 ] + 2 multiplications and n additions. See [7] and [10] for other results in this are&

For parallel evaluation of polynomials, some major results are due to [71 , [8), and [10]. These

results suffer from some of the same difficulties as the previously mentioned work on the efficiency and

speed-up. See the paper [1] for an analysis of some of the difficulties involved.

3. PARALLEL ALGORITHMS USED FOR POLYNOMIALS IN A SINGLE VARIABLE

In this section, we describe algorithms (both sequential and parallel) for evaluation of low degree

polynomials in one variable. In order to conserve space, we have omitted each case of Horner's algo-

rithm for single processors and have followed the notational conventions of using the terminology of

the original papers with "pre-processing" and not explicitly writing obvious communications between

processors.

A2.2: (Homer's method, quadratic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
a2x alx
a 2r 2  alx + ao

a2x2 + alx + ao

for second degree polynomials,



-5-

A3.1a: (Knuth's method, cubic polynomial, single processor)

y =X +C

W =y2

y 2  W - al

z =ay

z = 2 +

ZY2

A3.2: (Homer's method, cubic polynomial, two processmrs)

PROCESSOR 1 PROCESSOR 2
x 2  x 2

a2x 2  a~z 2

ax 2 
+ a 0  a x 2 +a,

(a 3x
2 + al)x

a 2x
2 + ao+(a3X2 + al)z

A3.2a: (Knuth's method, cubic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
y =x +C y =x +C
y2 a3y
y 2 _ aEl z = a3y +
Z y2 _ CE)

for third degree polynomials and

A4.1a: (Knuth's method, quartic polynomial, single processor)

y =x +c
W =y2

w - aI

a.y

a4y + ao

(a4y + uo)y

z = (a4y + ao)y +

z(w -a,)
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A4.2: (Homer's method, quartic polynomial, two processors)

PROCESSOR I PROCESSOR 2
X 2  X 2

a4 x2  a3 x2

a4x
2 + a2  a3x 2 +a,

(a4x2 + a2)X2  (a x2 + u1)x
(a*X2 + a2)x2 + ao

(a4X2 + a2)x2 + a0 + (a3X2 + al)x

A4.2a: (Knuth's method, quartic polynomial, two processors)

PROCESSOR I PROCESSOR 2

X+Qo x+r+.2
z = (x+ao)x delay
y =z +a delay

x +ao2+y
(x + a + y)y
(x + a2 + y)y + a 3

((x+y+Ca2)y + a3)a4

and

A4.2b: (Knuth's method with modifications, quartic polynomial, two processors)

PROCESSOR 1 PROCESSOR 2
y=x+c y=x+c

y2 a4y

Y2"-Xl a 4 y + a 0

delay (a4Y + COz)y
z = (a4y + ao)y +

-(y2 _ a,)

for fourth degree polynomials.

These algorithms were implemented on a variety of distributed systems with processing elements

of several different architectures. The results are given in the next section.

In each case, the processors used in the distributed system were identical. The experiment was

repeated for each algorithm so that some independence of processors was obtained. Assembly code was

not optimized by any unusual tricks but was given with the intention of imitating typical code generated

by a compiler. Thus the results should be typical of the situation actually encountered in practice, espe-

cially since the general problem of efficiently using registers for computation on an arbitrary computer
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is extremely difficult.

Suppose we define a processing element as a triple (CPU, memory, single data channel-in, single

data channel-out). The results of this paper are described in the following thorem. We will need to

use the following notation:

t = time for addition/subtraction,
t, = time for multiplication/division,
t.d= time for array index access,
t, = time for memory access,
tP= time for loop control
to..= time for communication between two adjacent processors.

Theorem 1 : Let F be an arbitrary polynomial of degree 2, 3. or 4 in a single real variable u. Suppose

also that F has real coefficients. Let E(pn) and S(pn) be the efficiency and speed-up for the problem

of evaluating F (u) at a real variable u on a p-processor non-pipeined system for a polynomial of

degree n. Then

S(2,2) < (2t.a + 2t.f + 5t. + 2tw.) / (t." + 2t,.* + 3t., + t ,, + t.)

E (2,2) = S (2.2)/2

S(2,3) (3t," + 3t*, + 7t,,, + 3tjd.,,((2t-, + 3t,.at + 4t.. + 2tw + tu,,,)

S(2,3) < (3t,"i + 3t,,* + 7t,,m + 3ttp=)/(2taij + 2 trot, + 5t,,,i + 2t, jm + tI,,)

E (2,3) = S (2,3)12

S (2,4) ! (4t." + 4t, + 9t... + 4t:)y(3st + 3tw, + 6t. + 24,,. + rc.)

E (2,4) = S (2,4)12

Proof.

Algorithms A2.1, A3.1, and A4.1 represent Homer's method on one processor. Note also that we

can reduce the number of index accesses by one if we note that ao is typically in the first memory cell

devoted to the array of coefficients. We have the following table which describes the total-time needed

for evaluation of the polynomial F.
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ALGORITHM TOTAL TIME

A2.1 28..w + 24..& + 5t.. + 21.

A2.2 tw + 24. + 3t, + td. + t.

A3.1 3twd + 3trai + 7tin + 3twi

A3.la 3 t.m + 3t.,u + 7t,,m + 3t&

A3.2 2t, + 3tm, + 4tm + 2thwu + to.

A3.2a 2t,, + 2t..u + 5t.,j + 2 tw.j + to.

A4.1 4t," + 4tm + 9t,,. + 4tw

A4.1a 4t-d + 4t,,* + 9t, + 4t

A4. 3 t.. + 31nk + 6tm + 2 t-jdu + tm

A4.2a 4t. + 3t.,& + 9t... + 4t + ti..

A4.2b 3to + 3t,,& + 8t,,, + 2& + t,,,

Examination of the table completes the proof of the theoem.
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Remars

1. These bounds on the efficiency and speed-up are not increased if we allow each of the proces-

sors to have registr with faster a time than normal memory access.

2. The performance algorithms can be speeded up if we feed in data via a pipeline. This simation

was not described by the theorem since it violates the single data channel-in and single data

channel-out requirement. In particular, our results do not apply to algorithms such as

deasdejau's method pictured below for computing cubics. Note that the cubics produced are not

in standard form.

-,S a-1-. I

In deCastlejau's method, the values of P0 . P1, P2, and P3 are given to the processing elements in

the bottom row. These values ae multiplied by x and sent to the processor pictured above at the

same time that they are multiplied by I - x and sent to the processor at right. This simultaneity

is due to the pipelined architecture and the special design of the processing elements. In the next

step, this is repeated in the next row of processing elements P 4, Ps , P6 . At the same time, the

processors in the bottom row are sent new values of x to continue the process. A similar thing

happens when data flows up from the first row to the second row and from the second row to the

top row. Let us ignore the time t,. for indexing the four values that are given to the processing
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elements in the bottom row. The steady state speed-up and efficiency of this algorithm are each

much greater than that of the obvious sequential analog because of the tremendous decrease in

memory access and pipelining. In fact, for a single value we have a parallel time of

5t. + 3tm, + 3t.,& + 3t.& as opposed to 42t.,.. + 12t.. + 12 for the sequential method.

Evaluation of N points using this pipeline involves (N + 2)(t., + t,& + t,) as opposed to the

sequential time which is 42Nt.. + 12Nt, + 12Nt,. In this case, the speed-up is at least

12N/(N+2) and the efficiency is at least 1 for N larger than 10. This provides another example of

the well-known fact that efficiencies greater thari one are easy to obtain if we consider poor

sequential algorithms.

3. Note that the trivial evaluation of a polynomial of degree one takes only two arithmetic steps

(one multiplication and one addition), 3 memory accesses and one index time and thus this

evaluation can be done fastest on a single processor.

4. PARALLEL ALGORITHMS FOR POLYNOMIALS IN TWO VARIABLES

In this section we will consider three types of algorithms: parallelized versions of the algorithms

presented in the previous section, parallelized versions of matrix algorithms, and pipelined algorithms

based either on the deCastlejau method or on the method of finite differences.

The evaluation of polynomials in two variables can be described in terms of the evaluation of

polynomials in a single variable. A simple way to do this is to recognize that a polynomial F in two

variables u and v can be considered as a polynomial P in one variable v whose coefficients are poly-

nomials Q, in the variable u. Using this idea, the time for sequential evaluation of a polynomial F

where u and v appear to at most the third power is four times the time for the evaluation of a polyno-

mial in a single variable u (since there are four polynomials as coefficients) plus the time for evaluation

of a polynomial in v whose coefficients are the Qj. This is 5 times the values of the time given in the

previous section. Using Homer's method as a starting point, the time for evaluation is

5(3tad + 3t.,* + 7t,, + 3tj) + 8t,,,, + Qid

where the additional terms are obtained from accessing the Qj.
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A matrix method is frequently used for sequential evaluation of polynomials in two variables on a

single processor. This method involves the quadratic form UMVT where U and V represent the row

vectors 1, u, u2, u3 and 1, v, v2. v3, M represents the matrix of coefficients, and the superscript T indi-

cates the transpose. This involves 4 multiplications for the powers of the variables, 20 multiplications

involving coefficients, 15 additions, 55 memory accesses, and 40 index accesses. The total can be

reduced by removing redundant multiplications by I to

15t," + 19t,,b + 45tnm + 40tj,, (4.1)

which is slightly slower than the first sequential example.

The computations in this algorithm can obviously be speeded up by performing some of them in

parallel. For example, each of the 4 multiplications of a row and a column vector can be done in paral-

lel with the last results being communicated to a single processor. Using 4 processors, the time is

reduced to

6t," + 6t,,,k + 18t, + 16td + 4t,.. (4.2)

and the speedup is

15to, + 19t,,* + 45t,,. + 40tw

6tu + 6t.:k + 18t,,, + 16t: + 4

In the remainder of this section, we will consider the extent to which the times in equation (4.2) can be

improved if some of the computations are done in parallel.

We will use the term bicubic polynomial to denote a polynomial in two variables with real

coefficients such that each variable appears to at most the third power.

Theorem 2 : Let P(u,v) be a bicubic polynomial in the real variables u and v. The speedup in the

time to evaluate P (m v) using two processors and no matrix methods is at most

15t,& + 15t, , + 43t,,, + l9t,,= -(4.3)

9t," + 9t,, + 24t,,, + 10t:k + t(4.)

and the efficiency is at most 19/10. Using four processors, the speedup is at most

15t," + 15tnu + 43t,,, + 19t(

6t, + 6t,, + 15t,,m + 10tin + 4t,(4M

and the efficiency is at most 43/15.
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Proof.

In the algorithms given for evaluation of a polynomial in a single variable presented in the previ-

ous section, all of the coefficients were assumed to have been loaded into the memory of the appropri-

ate processor. In addition, the time for the pre-processing of the original coefficients in Knuth's algo-

rithms (A3.1a, A32a, A42a, and A4.2b) was ignored since it was presumed to have been small com-

pared to the large amount of time needed for evaluation of the polynomial at many points. Neither of

these assumptions may be used directly in the case of polynomials in many variables since the depen-

dence of coefficients of a polynomial pre-processing and loading of coefficients has not generally been

done prior to the evaluation of the polynomial.

For two processors, there are two basic organizations possible: use a parallel algorithm for each

evaluation or use sequential algorithms for the polynomials in one variable, using each processor in a

sequential manner, with communication between processors at the end. Using the parallel Homer's

algorithm A3.2 five times, we have a time of

5(2t," + % +k 4+ , + 2tid,) + Q.. (4.5)

to which we must add the time for extra memory accesses due to the various coefficients of the already

computed polynomial in one variable not being in the memory of the correct processor for the computa-

tion of the polynomial in two variables as well as time for communication. Using the most efficient

choices causes the total obtained by using A3.2 five times to change from equation (4.5) to

10tl:, + 151rok + 28ti + 14:, + 71,,m. (4.6)

A similar design using a parallel Knuth's algorithm A3.2a five times gives a total time of

5(2t,"a + 2trait + 5tw,, + 2tj,&, + t ,)+ 8tmm, + 4tidn + t, (4.7)

where t represents the time for "pre-processing" the polynomials in a single variable to become

coefficients of a polynomial in two variables. This last step is necessary since the output of Knuth's

method is a polynomial in standard, not pIne-processed form. This pre-processing takes many additions

and multiplications and cannot be ignored since it is done whenever we evaluate the polynomial in two _

variables. Thus this algorithm does not easily parallelize.

The other method that we consider involves using sequential methods as long as possible. Here
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we use processor 1 to compute the polynomials Q0 and Q2 with processor 2 computing QI and Q3 fol-

lowed by a parallel evaluation of the polynomial in two variables. The total time is

2(3td + 3t,,u + 7t, + 3t:d,) + 6tm, + 2tiu +

3t," + 3t,,, + 4ti,n + 2tk + 8t,,, + 4t + tm,
for a total of

9t," + 9t., + 24t. + 10t, + t,.. (4.8)

which is considerably smaller than either (4.6) or (4.7). This proves (4.3). To prove (4.4), we simply

apply the same reasoning to the case of four processors and keep track of added communication,

memory and index times to obtain the desired result. This completes the proof of the theorem.

Theorem 3 : Let P(u,v) be a bicubic polynomial in the real variables u and v and suppose that P is

to be evaluated at N points without using matrix methods. Then the speedup in the evaluation time is

asymptotically the same as in theorem 2 for the case of two processors and

4N(15t. + 19t:m + 45tm + 40t~iw + 5tmn)

(5N + 8)((3t:u + 3t,,u + 7t,,, + 3ti,&,) + 8t,, + 4twu + 4Nt,,) (

for four processors. If five processors are available, the speedup improves to

N(15t:, + 19t,,h + 45t, + 40ti,= + 5t)

(N + 1)(3t," + 3t,. + 7t,,, + 3tidu) + N(81,mm + 4 tQj,. + 44.)0

Proof.

For a two processor system, one of the processing elements will be idle much of the time in the

final computation of the bicubic. This is still the case if there are many points at which the bicubic is

to be evaluated and hence the speedup is essentially limited by the factors slowing down the evaluation

at a single point. The maximum speedup is dependent on careful programming to minimize idle time;

in any event it is similar to the results previously given.

Note that the effect of t,,,, has been changed in the numerator of (4.9) and (4.10). This was done

to account for the new loading of the values of the coefficients into memory at initialization; this was

not considered previously. To evaluate a bicubic polynomial at N points using four processors, we

must also have some amount of idle processor time. The results from each of the single variable evalua-

tions must be made available to the processor performing the evaluation in the second variable. The
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evaluations being performed are given below.

PROCESSOR 1 PROCESSOR 2 PROCESSOR 3 PROCESSOR 4

1 1 1 1

1 2 2 2

2 3 3 3

2 3 4 4

3 4 4 5

4 5 5 5

5 6 6 6

The state of available processors is precisely the same in this last state as it was in the second

state where evaluation 2 was being done on processors 2, 3, and 4. Thus the time for evaluation of N

points is the sum of an initialization time plus a time for getting to the same state plus a time for termi-

nation. The total is dependent on the value of N modulo 4; in the simplest case it is

(5N + 8)((3t," + 3t,, + 7t,,, + 3ti,=) + 8tin, + 4ti,, + 4Nt, )/4.

Considerable improvement is possible if we have five processors available. In this case, the

evaluations of the polynomials in a single variable are done on four processors and the fifth processor is

devoted to evaluation of the bicubic after data is transmitted to it. The total time for evaluation of a

bicubic at N points is thus approximately N times the time for evaluation of a single variable polyno-

mial with an additional time added for evaluation of the last bicubic on the fifth processor. The actual

total is

(N + l)( 3 t + 3t, + 7tm,, + 3ti,,) + N(8tm,, + 4tip + 4t,").

This completes the proof of the theorem.
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The next method we consider is that of using pipelined architectures. Modifying the method of

deCaslejau leads to a pyramidal architecture scheme in which there are 16 nodes at lowest level,

grouped into 4 collections of four nodes each. Each of these collections computes a different polyno-

mial in one of the variables and sends its output to another collection of nodes using the same pipelined

design as considered in the previous section. This last collection of nodes takes the values of the

second independent variable and continues as in the deCastlejau model in the previous section to com-

pute the values of the polynomial in terms of the second independent variable and thus produces the

output of a polynomial of appropriate degree in both variables. As before, the polynomial is not in

standard form but instead appears in a form conducive to numerical computation. The next result is

easily obtained using the same reasoning as in the analysis of deCastlejau's method in the previous sec-

tion; the proof is omitted. As before, efficiency larger than 1 is possible for this algorithm using a

pipelined architecture.

Theorem 4: The speedup using deCastlejau's method instead of sequential evaluation to evaluate a

bicubic polynomial at N points is

5(42M. + 12Nt. + 12Nt.d)

(N + 6)(tin + t.,* + t.")

The efficiency is 60N/(N+6), which is greater than 1 if N > 12.

S. DISCUSSION

The primary motivation for the research in this paper was the controversy generated by the papers

(21, [5], and [9] and the observation in [41 that many parallel algorithms do not perform at or even near

their theoretical limits on many actual parallel machines. The algorithms were implemented in assem-

bly language on a simulator which can be configured to model a number of different distributed system

architectures and CPU's. Implementing these algorithms using low level assembly languages emulated

the actual running of a computer and avoided making any assumptions about the quality of code gen-

erated bya compiler or assembler. Each load or store instruction was counted as a memory access and

it was assumed that the time for data transfer into and from memory is the same. In general, the

observed execution times showed good agreement with the theoretically obtained times described earlier
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in the paper.

The optimal number of processors for parallel computation of second, third, or fourth degree

polynomials of a single variable at a single input value on non-pipelined systems is 2. While it is pos-

sible to obtain a parallel algorithm for particular choices of polynomials, communication and synchroni-

zation constraints make it difficult to design an efficient generalized parallel algorithm which is

independent of either underlying connection architecture or the actual architecture of the processor ele-

ments.

Note also that the models of computation described in this paper all assumed that the processors

shared no common memory; this assumption is common in hypercube computers. However, shared

memory simply reduces the time for inter-processor communication and thus the value of the quantity

t,. will be smaller than in a non-shared computer. Of course, the time represented by it will still be

present in any real situation. For example, the reference [3] has an example of the use of the method

of finite differences to speed up sequential evaluation of bicubics. Unfortunately, it seems that a pipe-

lined method such as the method of finite differences can only be used on a shared memory multi-

processor system. No speedups were found using this method for evaluation of bicubics on our simula-

tor for any architecture.

For quadratic functions, Homer's method provides the best pre-processing scheme. Hence the

sequential processing of a quadratic will exploit this scheme. On the other hand, for n > 3, the scheme

by Knuth [6] will be utilized. In this example also, there is no need for more than 2 processors. Even

for n = 4, the optimal number of processors is apparently 2. Furthermore, parallelizing evaluation of

cubics via Knuth's pre-processing scheme on a 2-processor computer cuts the multiplications to 2, addi-

tions to 2, and memory accesses to 5 with 1 inter-processor communication. Nevertheless, the speed-up

obtained is actually an approximate value because of the pre-processing involved. To obtain the param-

eters in the pre-processing scheme, n+l simultaneous equations have to be solved. The roots of these

equations may even be complex. Therefore if the same polynomial is not to be evaluated at numerous x

values then this method may not be superior to Homer's. Given this fact, our experiment indicates that

using Knuth's scheme for low degree polynomials, evaluation can be implemented on a 2-processor
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computer but that the efficiency is considerably less than 1.

The optimal number of processors for evaluation of bicubics at N points is a multiple of 5 assum-

ing that the communication times between processors is constant. If the number of processors is a mul-

tiple of 5, then the results given in theorem 3 can simply be divided by an appropriate constant.

A final remark is in order about bottlenecks in a system for display of the bicubics that we con-

sidered in this paper. Most computer graphics systems use either a raster-type output device such as a

CRT screen or laser printer in which the picture is scanned one line at a time or a vector device where

a writing device moves from one point to the next rather than a line at a time. The most common

example of a vector device is a plotter although vector CRT screens are still available. In general, all

of these devices are sequential and vector devices in particular are not well suited to parallelization.

Perhaps the next step is special parallel output devices.
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GEOMETRIC CONSIDERATIONS IN BLENDING SURFACES
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Deparment of Systems & Computer Science
School of Engineering

Howard University
Washington, D.C. 20059

L INTRODUCTION

A major problem in solid modeling is computing a "blending surface between two intersecting
surfaces. In a typical example, the surfaces an described by some polynomial equation of low degree
and the blending surfae is intended to provide a transition between the surfaces. The actual form of
the blending srace or its equation ae generally not as important as the need to rapidly compute ihe
surfac in order to be able to use it in an interactive system. For an example of a blending surface,
look at a standard telephone.

One obvious method of describing the blending of two surfaces is to use the surface that is swept
out by a rolling ball tangent to both of the surfaces. Unfortunately, this method often has the undesir-
able effect of having blending surfaces which have much higher degree than the surfaces to be blended,
which am often quadric. Strange geometri effects am often associated with this type of blend, parnicu-
lary when there ae more than one surface to be blended.

Many authors ([2,(3].[43,6]1[8J9]and (101) have considered the problem of the generation of
blending surfaces. biddleditch & Sears (6) describe blending by a method which gives blending sur-
faces of degree 4 if the surfaces to be blended am of degree 2. In (10], the author considers using other
blending surfaces described by toroids and cylindrical pieces in which the blending surfaces also have
low alpgebraic degree.

Hopcroft & Hoffman have taken another view. In a collection of papers ([2], (3] and [4], they
develop a method that they call the projective method. This method uses some techniques from alge-
braic geometry to obtain a surface which blends two surfaces by choosing curves on each and then
obtaining a surface which is tangent to the surfaces at the given curves. In [3], they show that if the
curves am quadratic curves and the surfaces am quadric, then the blending surfaces ae of degree four.

All of these methods lead to s,-aces which blend the existing surfaces. In many but not all
applications, they provide satisfactory results from an aesthetic point of view. We note that there ae
typically two concerns for blending surfaces in these paper rapid computation and description of the
surfaces by simple equations of relatively low degree. The equations of low degree ae desirable since
blending is ot followed by shading and by ray tracing. The &.,Uing and my tracing algorithms am
for simpler and Laster than if the degreL of the surface is small The only geometric constraint ever
used is that of tangency to the surfaces, often in prescribed curves.

In this note, we consider the generation of blending surfaces which attempt to minimize the sir-
face area of the blend. Our technique will involve a mathematical theory known as the calculus of
variations. We present an analysis of thc Xifficulties involved with this technique and show the applica-
tion to several problems.

This paper is grouped into four sections. Section 1 is the introduction. In section 2. we give
some results 5ro the calculus of variations that am relevant to blending surfaces. In section 3, we
apply these results to some simple blending surfaces. In section 4, we analyze the results obtained and
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close with some suggestions for implementation and for future work.

2. RELEVANT NOTIONS FROM THE CALCULUS OF VARIATIONS
The calculus of variations was largely developed by Euler and Lagrange in the seventeenth cen-

tury. It is concerned with the problem of obtaining a curve or surface which maximizes or minimizes
some function of t"s curve or suIface. In the cae of a curve, the problem to be solved generally
requires niniMi ing or maximizing the functional

JFy] .JF(xyy)

where F is some function of x. the unknown cue y = y(x) and $ represents the derivative of y with
respect to x. For simplicity, the limits of integration have been omitted. The solution to this problem
must satisfy the well-known Euler dierential equation

dx

These results can be extended to problems involving surfaces and high derivatives; in fact, we will
use the extension to functions of surfaces later. A huge number of papers have been written on this
subject. The text [1] is an excellent reference for the theoretical background needed for a complete
understanding of the subject as used here as well as derivations of the major formulas. We will be con-
cerned with two uses of the calculus of variations with regard to the problem of finding the surfac of
mimmn area with ceain restictios.

The ist proMblem we consider.is the following (1, p20-211. Among all smooth curves which pass
through two fixed points P and Q, find the one for which the area of the surface of revolution formed
by revolving the curve about the x axis is a minimum. This leads us to the problem of finding a func-
tion y =y(x) whose graph passes through P and Q and which minimizes the surface area given by the
integral

Jy uI fy IT .+yl/dx dx.

In this case, the Euler differential equation becomes

F -$y Fj =0.

which has the solution

y = C cosh (( x + K)C)

This function y will be the unique solution of the problem provided that a single curve -of this
form can be drawn through P and Q. There is always a smooth solution provided that the slope of the
line joining them is sufficiently small; in the limit as x2 - xl approaches 0, the slope must approach 0.
Note that the graph of the function y(x) is a catenary which is the shape of a heavy cable with no extra
load and which is acted only by the force of gravity. The surface of revolution is also well-known; it is
called a catenoid.

In the next example, we consider the much more interesting problem of surfaces that are not six-
faces of revolution (1, p22-24]. For the case where the surface can t- written in the form z = z(xy), |
the problem is to find the minimum of the functional

JLyI=J - 1+.2+
and thus Euler's equation has the form

r ( 1 +q2-2spq + t( +p 2)= 0

where

p =Z, q = z,, r = z. s =zz t = .



The left hand side of Eulr's equation is the numerator in the equation of the mean curvature of
Uas.. fc-and thus-we know that any urfacewhich.m zesdi sufacea h ave c mea cur-

,vauae. See [11 and [51 for a -discussion of the meaning of these terms in differential geomewty. Now
that this analysis did not make any use of the underlying region of integration and that in paricular did
not use the boundary conditions which am necessary for a blending surface. ( For a discussion of this
topic, see [I. p173-176]). In general, the non-linea partial differential equation is difficult to solve
explicitly, even in the simplst cues. In addition, the ae often many solutions to the partial
differential equation for given boundary conditions which are not even local solutions to the problem of
minimizing the total smrfte ama

We have two choices in this situation. We can ask for a complete solution of the partial
differential equation with the approprate, boundary conditions and require that the solution also minim-
iz the area. Of course, we must ex that a lae amount of numerical computation will be neces.
ry. Another choice is to find simple solutions to the, Euler equation, even though we ignore the boun-

dary requirements. This method will provide blending surface with 0 mean curvature, but is unlikely
to actually minimize the surface area.

In this psper, we elect the second option. We wish to use as our solution of Euler's equation the
folowing surface caned Enneper's su tce by Rassias [8, p429]. We will change the notation of [8]
slightly to write the surface as a set in x-y-z space with the surface being the image of the disk
u +v < r in the u-v plane. The surface is iven by the equtions

xmu+UV2 - I.u3

7=-v-g v+-Lv
3

3 -- V2_ V

As is clear from figure 1, the surface is simply connected as a subset of RI and is simple (not
self-intersecting) for r < 4" (8]. Consequently, it is simple for the unit squae, which is a smaller set
(figure 2). It is easy to check that this surface satisfies the Euler equation and thus has 0 mean curva-
tam
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3. APPLICATIONS

In the previous section, we considered the problem of determining minimal surfaces with certain
*reattictions.: We obtained a complete solutions only for surfaces of revolution. For other surfaces, we
were able to.obtiiin tK6 resaritoii .of the surface having 0 mean curvature and gave an example of a

*g j*:*itj 1 -tispopery. hi this section, we apply these results to a few examples of simple
blnigsurfaces.

Out first exaple as that of a cylinder of revolution intersecting a plane surfac in a right angle.
In this situation, we have surface of revolution and hence we may use the catenoid surface. of the pre.
vious section. In figure 3 we show the two surfaces withiout blending and in figure 4 we use a blending
surface. The blend is a catenoid obtained by rotating the curve

y - c cosh(( X + KyC)
about the x-axis. The local coordinates M-CA) are chosen for the intersection with the plane x .0
and the coordinates A0CA0 are chosen for the intersection with the cylinder.

Our second example is typical of many problem in this field in that simple geometric suzrfaces
may lead to somewhat complicated blending surfaces. We consider the case of two right cylinders of
equal radius intersecting at a right angle. In figure 5, the two cylinders are sketched and their intersec-
tion is given in bold. In figure 6. we use a blend consisting of portions of Enneper's surface.



4. ANALYSIS OF RESULTS OBTAINED

W. e pirnte d two .surface be" used in blending problems Te primary goal ws to
min the surface atea of the blending surface with an easily computed surfacm Use of these blend-
ing afaces have been demonstrated in two examples of somewhat different nature. It is reasonable to

... . .~. ow those tw., .psufl iteria.f.. blend ing surfWs., Tb is, ar t,sa.perturba-
:" """ini ily copt? g6metricisly significant, and well-suited io control by a usae of a solid model.

ingsysei?

We fit consider the question of speed. Using the cubic sface of Ennepr & id in this
paqr requires the computation of a cubic polynomial in two parameters u and v. For the blending of
two quadratic surfaces this is slightly faster than the computation of the general fourth degree blending
surface that generated by the prjective method of Hoffman & Hopcroft or the fourth degree surface
generated by the method of lfiddleditch & Sears. It is cerainly faster than the higher degree surfces
that have been used by other authors. For higher degree surfaces, our method still uses a cubic blend-
ing surface while these other methois produce higher deg=a blends. In addition, our method works for
non-polynomial surfaces whereas the projective method does not.

For situations such as in the first example considered in this paper, blending surfaces of revolu-
tion a e useful. At first glance, they appear to be highly complex surface which require tensive
computation to plot. However, the catnoid given here depends on two parameters C and K which
depend on the points chosen as controls. We could have used a lookup table for the values of the
catmy which is to be rotated. This speeds up the computation of the blending surfac but may cause
a ta time penalty if ray tracing is to follow the blend because of the time needed to comput the
inmrsections between the surface and rays of light. This excess computation may be reduced by replac-
ing the hyperbolic cosine by the first few terms of its Taylor expansion about the origin as in figure 7.
We note the similarity between the surfaces in figure 4 and figure 7. This is an example of nother
phenomenon in computer graphics in which several different approximations of a surface give similar

In the more difficult case where we do not have surfaces of revolutioa, the more general type of
blending surface is needed. Here we use a cubic surface which is simple to compute. It often requires
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a catain amount of patching but this is unavoidable in many instances..

.. ac.o th u diWussed in. this pR. we Obtainedblending surfaces that. were small.
pmmr "ario eily computed andwell suited to control by a user of a geometric modeling system. In
the fir case of surfaces of mvolution. blending into another surface of revolution about the same axis,
the result .ininuzes surface area. In the second, more general situation, the proposed.blend is a solu-
• ..' : .ua's'ul~ r lir f ly"iim th6 =. "'-. -" '" *- ' """:" . .

Unfornawly, then blending surfaces ae not tangent to the given surfaces in generaL We may
elect to eith accept these non-tagential blending surfaces as is or to rebled them nmr the points of
imemection of the blending scrfae and the given surface. A reblend" in this case would involve treat-
ing the blending surface as a small perurbation and then multiplying the values of the blend by a sal
paaet approaching 0 rapidly. Prhaps the ue of lookup tables for the exponential function and the
camary for small values of the variable x would be appropriate in this context

An additional problem with most existing approaches to blending surfaces is that the geom-e7 -of
such surfaces is not always well undertood or related to the "reality" of the situation. In particular,
many blending algorithms when applied to even simple examples such as quadric surfaces which
describie solid objects, cannot be guaranteed to lie entirely outside of the existing objects in the case of
extrnal blends. A simiar problem also occurs for internal blends. Future work will consider ti
Problem as well as the nature of the reblends mentioned earlier.

.. 
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MINIMAL BLENDING SURFACES

Ronald J. Leach

Department of Systems & Computer Scion=
School of Engineering

Howard University
Washingto, D.C. 20059

L IDTRODUCTION
A major problem in solid modeling systems occurs when two solids immrL Generally, it is not

sufficient to smply compute the intersection of the two surfaces that bound the sol ,. It is oft mom
important to replace the two surfaces near their intersection by a blending surface which allows a
smooth truition between the surfaces. Blending surfaces should have the properties of being : easily
computed, well suited to being accessed by other software in the solid modeling system, and being
geomevically accurate. Many paper have been writen on the subject of blendin -urfaces using a
vriety of techniques [4], [5]. [10], [11], and (12] we somewhat typical

Some of these prps consider the blending surface as the final step in a rvuesentston and
display process. They emphasize the aesthetic appeal of the blending surface and we somewhat less
concerned with the analytic and computational proper of the blend. The blend surfaces obtained m
typically appealing, but ae often difficult to integrate rapidly into the other portions of the solid model-
ing.system because of the high algebraic degree of the surfaces obtained. Other papers (e.g. [11])
emphasize the integration into a solid modeling system but do not emphasize geometr -pecis.

Other techniques for blending surfaces emphasize the analytic requirements for rapid compuaion
while not emphasizing the global geometric properties of the surface. An example of this is the projec-
tive method of Hopcroft and Hoffman [4] which computes the surface of minimal de',e which is
Angent to certain surfaces in prescribed curves. Their method gives the blending surface of minimal
degree which is tagent to the given surfaces in the prescribed curves, but no conditions on the
geometry of the surfaces is given.

The purpose of this note is to study the applicability of blending surfaces which - .omputadon-
ally tractable and which em also "minimal surfaces". Minimal surfaces have a particular property
which is related to but not always identical with minimizing surface area; the exact reltionship and the
mathematical foundation is discussed in section 2. This minimizing propeny is very desirable in a solid
modeling system since the goal of blending surfaces in such a system is to provide a smooth transition
between solid objects which can be efficiently implemented by automated manufacturing tools such as
milling systems.

In this context, computationally tractable generally means that the surface is of low degree. In
this paper, we will consider those surfaces which am both computationally tractable and geometrically
signiicant

The paper is oqgnized as follows. In the next section, the background results and terminology
for the discussion of minimal surfaces is given. In section 3, we consider surfaces of degree 2 and
show that the only minimal sufaces of degree 2 we planes. It would be natural to perform the smne
a~ysis for surfaces of degree 3 and 4 by considering all of the posible caes. How .vcr, there em 99
possible types of surfaces and many of these types involve so many coefficients that analysis is beyond
the limit of the symbolic computation program MACSYMA (and hence beyond the limits of any
human performing the algebraic computations). Thus in section 4 we consider an alternate represena-
tion for minimal surfaces. In section 5 we show some examples of the use of minimal blending sur-
faes and the effects of cerain degrees of freedom on the behavior of the surface. Section 6 provides
a summary of results. The -aper closes with a discussion of some open problems.

3
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2. IUNEIAL SURFACES
A minimal surface is defined as the set of all points (xy,z) which satfy the secod orde .,.J

differential equotin z)wihsdyteecnorrP-.1

r(1 + q2) - 2pq +(1+ ). (2-1)

where

p=z ,q =z,r=z ,s =z , =v. (2.2)
In diffenutial geometry ([], [21, , [9D, it is well-known that the vanishing of the left hand ,". of
this equation impies that the mean curvature of the surfac is 0.

The partial differential equation is obtained as the solution to a "variational problem" of minimiz-
ing the surface area. An infMim number of funcuos isfy the equation: this is not surprising sm',- o
boundary condition a given. Unfotuuziely, eve when complete boundary conditions ae given in
the form -f requing that the surface must p s tough sme boundary curve, there may be many solu-
tions, not all of which actually minimize the surfae area over the class of all curves which pm
through the given boundary curve. The reader should think of soap bubbles as models of surfaces
which minimize surface ara.

A word on the methodology used in this paper is in order. As was indicated in this section, exten-
sive use is made of the symbolic manipulation program MACSYMA to actually compute the low
degree surfaces which we also minimal sufaces. MACSYMA is a trademark of Symbolics, Inc. The
computations we= performed on a SUN 2/120 workstation rning UNIX. The wrkstation had a phy-
sical memory of 4MB .and a virtual memory of approximatly 20.1MB. The original goal of this
research was to characterize all of the minimal surfaces which were of low degree by making use ,f
MACSYMA for the computations. We will see in the next section that extensive analyses and
simplifications had to be done in order to be able to use MACSYMA efficiently and not exceed the lim-
itation of the workstation.

Of cr rs. . the limitations of MACSYMA and the memory of the workstation am relevant only
during the chaacterzation of those surfaces which we actually minimal surfaces. The actual computa-
tion of appropiate minimal blending sufaces in applications is quite rapid, once the preliminary ana-
lyses have been made.

3. SURFACMS OF DEGREE 2

The most general surface of degree 2 is given by the implicit equation

F(xyjz) =Ax 2 +BXy + Cy2 +D +Eyz +Fz 2 + Gx +Hy +I: +J =0 (3.1)

This equatmon involves 10 constants of which 9 may be arbitrarily chosen.

The goal of this paper is to characterize the low degree minimal blending surfaces. A brute fore
computation of the result of the differential operator of formula (2.1) on F(xy z) using implicit
diffEtat k to an exession which requires six pages to print and which cannot be factored
directly within the memry limittions of the compuer. Clearly a simplification was needed, especa.,
since the intention bf this research was to classify the potential minimal blending surfaces of low
degree. The only possibility is to consider classification of the various surfaces that can arise from the
expreon -F(xz). One obvious simplification is to observe that all of the linear terms can be e1 u-
maed by translaton. It is less clear that that all of the mixed tems can be eliminatod by appropria&
romions; the original observation of this was apparently due to Euler. We note that translations and
rolluons leave the minimal surface equation invariant. We will use the invariance of the minimal equa-
tion frequently without mention while considering possible simplifications of various expressions.

R moval of w~e mixed terms leaves several possibilities: the variable z does not appear and thus
the surface is f the form

Ax 2 + By2 = C (3.2)

which is an elliptic cylinder, hyperbolic cylinder, or two planes; the variable z appears to only the first
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power and thus the surface has the equ-ion

z = Ax 2 + By2 + C (3.3)
which is either a paraboloid (elliptic or hypebolic) or a parabolic cylinder, or the variable z appears to
the second powr and the urae has die equation

X2 ± =2. (3.4)

Here all of the unnecessy linear ems have been eliminated none of a. b and c are 0. We consider
separately the cases where z does not qppear, where it appears o the first power and where it appears
to the second power.

If z does not appear as in equation (3.2), then the minimal surface equation implies that the sur-
face must be a pardon of a plane.

f z appeas to thb first power only as in equation (3.3), then the minimal surface equation yiekls

2A (4By2+ 1)+2B (4A,4 + 1)=0

which is only possible for arbitrary x,y, and z only if A =B = 0 and therefore the surfac is a plane.
When the variable z appears to the second power as in equation (3.5), the minimal surface equa-

tion yields two possible solutions either the surface is a horizontal plane or els

(ED)CX2 +DC+D 2C (3.6)
DC 2 - DE

The first equation is that of a plane. The second equation (3.6) implies a restriction on the surface in
that its points must also lie on nother surface, which as we saw earlier was a paraboloid.

Thus we have obtained the following result.
Theorem

The only minimal swatces of degree 2 are planes.

4. MIGHER DEGREE SURFACES
The most general surface of degre 3 is given by the implicit equation G(xyz) = 0, where

G(x,z)=Ax3 +Bx y + Cxy 2 +Dy 3 + Ex2z +F= 2+ Gz 3+Hy2z +lyz2 +F(x,y,z) (4.1)

and F(x ,,z) is an arbitrary second degree expnssion in x, y, and z. As before, the minimal equation
for this general expression is too complicated to submit to a symbolic algebra program and ihus we
resort to some simplificatons. The number of possible cases is considerably larger than the number of
possibilities for degree 2 surfaces. Salmon [13] indicates 23 possible forms which are classified accord-
ing to what he calls their -class" and -singularities-. An examination of 5 of these forms failed to yield
any minimal surfaces after considerable computer time per example and hence an altrnative approach
was used. Note that the situation is even worse for surfaces of degree 4. Salmon indicates that there
are 76 different spe.M of surfaces. The references [3], [13], and (14] describe the possibilities for sur-
faces of degree 2, 3, and 4.

L [2], the authors descritt a method due to Weierstrass in which auxiliary mappings are used to
find immnerizations of minimal surfaces. The method is:

1. Cbose an open, connected subset of the plane.
2. Choose a complex-valued analytic function g and differential w in some domain D so

that the expressions a,. Q2, and t, defined in (4.4) - (4.6) satisfy

Lot? = 0 (4.2)

.C,1* 12 > 0. (4.3)

4 ,.
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3. Form the Wpxins Ci, %2. and as by

CiY =(1- (4.4)

~ (1 + g2)..!'. (4.5)

% -=5W, (4.6)

4. Integrate the expressons on doe right hand sides of equations (4.4), (4.5), and (4.6) from 0 to
z. Replace z by u +iv. To obtain theparInerzt of the surface, se x, y, and:z to be tbereal
Pamt of the integrls

ftis easy to e that if each of the a* is constant, thenathe surface isa pane. I dditzon if g is
constant, then the exprssions in equations (4.4) and (4.6) ae proportonal to one another and hence the
surface lies in a Plane.

113 choice g - z, w = I leads to the surface known as Enneper's surface [2] which is described
by

z U 3 + w2 , (4.7a)3

y--V+3__ 2 (4.7b)

z - 2-V2 . (4.7c)

This surface appears to be of high degree even though no terms in the paneterization have degree
higher than 3; MACSYMA indicates a degree of 27 when using the "eliminae command.

Thie choice g = z, w =:z leads to asurface described bythie equation
b - V '-uv+u

4 8

Y- 2 2'
U- 3U2

3
The meult from a MACSYMA computation to eliminate the parameters and write in implicit form is
even more complicated; it takes 1288 lines to display and has a degree of at least 32.

It is clear that minimal surfasces (except for planes) wre either of high algebraic degree or not
algebraic. Based on these observations, we simply present several well-known minimal surfaces by their
parametric equations but will not attempt to write them in implicit form.

ht seems liely from the above discussion that them arm only two minimal surfaces of low
parametric degree. However, each of these surfaces has additional degrees of freedom. The constant
expression w = 1 can be replaceAi by the complex constant e + fi. The parameters e and f control the
rotation and scaling of the, surface. The effect of the other degrees of freedom is more striking. Each
term linear in:z can i'-. replaced by a term of the form A + Bz, where A and B em complex; this pro-
vides four additional degrees of freedom in the surfaces. The effect of these additional degrees of free-
domn will be discussed in the next s'actin.

T7he next three equation show how the original parametric equations of Enneper's surface (4.7a
throgh 4.7c) are infiuenced by the extr degrees of freedom.

X (I - a +b 2)u + 2abv _(c-da -v -( -bXu)(4.7d)
2 2

C (u' -3Ui')- d(3u2v -v0)
6

(+ a2 - ': + 2abu -(ac - bd)2w + s(ad +bcXg2 -) (47e
2 2



c(2 -v. U - 3u,2,
6-

z =a -b + c~u2-v 2)-2du (4.702

This am possibility of increasing the degrees of freedom holds in all of the other surfaces considered
in thais section to am reatemr degree.

The cateid aris frm th chokes g = e', w =-'. which leads to the et' izatio

x = cos(v)cos(u) - 1,

y = sin(v)cosh(u),

Z = U

A mimal srface due to C. C. Chen [2] is given by g =z + w =z2 and has the parametri-
*

zation

1U0v 2 -5uv4 - us  3V 2 -u 3  U
10 6 2'

-vs + 1eU~v 3 - 51 S, v2-3u2V - v
10 + 2

4' _ 6U2v
2 + v' 2 _ V2

4 2

The final surface that we present here is due to Jorge and Meeks [6]. It is obtained by choosing
g = z and wu(z l + 1 1)-2 and leads to the pmrametrization where the coordinates , y, and z are the
integrals of the real pans of the expressions c; given by

1. I- 2N(48aal=2(zn +I _ 1)TT(.a

C92- I + 22m)  (4.8b)
2(z" 1-I?

= --" (4.8c)

5. ANALYSIS OF THE SURFACES
The goal of blending surfaces is to provide a transition between surfaces. A blending surface

should be easy to generate, appear in a form which can be computed rapidly, and interface well with
the solid modeling system in which it is being used. The s'vface should be aesthetically pleasing and
represent only a small amount of additional material if the actual solid is to be created by use of a
computer-guided milling machine. The use of the few fixed blending surfaces described in this paper
certainly meets the'criterion of being easy to gSc.-ate since they are selected from a small list. They
are presented hee by their parametric representation and therefore can be computed rapidly, perhaps
not even requiring the use of any pahes. They share the sm-ie difficulty as any parametric representa-
tion in that intersections with other surfaces defined parametrically are much harder to compute than if
the surfaces were described explicitly. They ah . allow a certain amount of possible interaction with a
desirt in the sense that some of parameters which provide the degrees of freedom can be altered to
change the surface. We will illustrate this in detail for Enneper's surface which was discussed in the
previous section; the parameters u and v will be rsricted to the unit square. In [8], this surface was
used for blending two intersecting cylinders of equal radius. The graph of Enneper's minimal surface is
given in figure 1.

G
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Figure I &useper's surface

lie effects of the parameters a. b, c. and d of formulas (4.7d. 4.7e, and 4.7f) on the graph of the
surface wre shown in figure 2-21. T7he figures are grouped by varying each of die parameters singly
followed by consideration of seveal cases in which the parameters wre allowed to vary together.

17he first case that we consider is when the parameters bc, and d are all 0 and the parameter a
varies. In this case, the resulting surface obtained from the original Ennepe surface is always a plane.
T7he graphs arm shown in figures 2-4.

Figure 2 a a 1, bucadmO.
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Figure 3 a -2, bimcmd-O.



Figure 4 a -3, b-cm- ..
The effects of varying the 1rameters a. c, and d are shown in figures 5-6.

FigureS b-1.a-cmd=0.
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Figuare 6 b 2. amc=d-O.
The effects of the parameter c on tt, &.aph is more intemsing, at least in the range that we are

showing here. The surface displays a twis which was not obvious in the original Enneper surface (the
casea b dO0.c1) which was show infigure . 7he results are shown in figuresl7-9.

Figure 7 c =2, a=b-d=O.
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Fiure 8 c 3, a-bmdmo.

-j-

IVI

Figure 9 c =4, a,-bmd-O



The effect of the pameter d is shown in figures 10-12. Again there is a considerable twist in
some of the sufaes.

Figure 10 d- 1. a-bucO.

Figure 11 d = 2, a-bmc=O.



Figure 12 d m3. a-b-c=O.

4a
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Figures 1-12 indicate the effect of changing the paramers one at a ime. 7U neut cae to con-
side is when the parameters we varied two at a time. The simplest situation occurs when c and d am
both 0. An eamination of the effect of the paraneters a and b on the parametric form of the sur'v-
given in equatiom (4.4), (4.5) and (4.6) for Enneper's surface shows that the vanishing of c and d
implies that the surface is a plmue For this reason, we omit the graphs in this situion.

In figums 13-20, we show the rm t of some variations in the parameters a and c.

Figure 13 a =1. c =1. b .d-O.

Figure 14 a= 1. = 2 b=d=O.

I

4



Figure 15 a I c 3. b-d40.

Figure 16 a 2. c 1, bu-d-0.
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Figure 17 a -2, c -2, bad-O.

Figure 18 a=-2.c -=3,b=d=O.
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Figure 19 a -3, c .1, bad-).

Figure 20 a 3, c 2, b-d-.
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Notice that the level curves in the upper left coner of do graph in figure 20 we nearly straight,
indicatng that this type of surface could be usefu for bleniding whae one of the surfaces is a plane.

The IM variation of this surface that we give in this paper is shown in figure 21. It uses the
values a - 2 ud c - 3 with b and d being O. Many of the other choices of a,b, c, and d in the
nuau of imagm 0 .. 4 lead to surfaces which have cuspsand a tm herefu unsuitable for blendinf stw-

Figure 21 a = 2, d = 3. bc==O.

7U surfaces given in figures 1-21 indicate some of the modifications that can be made to a stan-
dard usxbce using certain degrees of freedom which can be descrmbed by the pammeters a, b, c, and
d. Additional degrees of fredomn are available in the paruaeters e and f. These two parameters were
not used here because in this example they simply cause rotation and scaling of the surface.

1V other potential blending surface that we show here is the Jorge-Meeks surface This s
is useiul in blending together n cylinders of equal radius which emanate from the same center. The
graph of the surface is presented hem only in the case n -3. It originally appeared in [2].

.' 4
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a

Figure 22

T7he effct~ of any of the degrees of freedom on the shape of the Jorge-Meeks stirface is quite
complex and is probably not easily predictable to a designer without access to either a symbolic algebra
lMpom or a nearby mathematician specializing in complex analysis.
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6. SUMMARY OF RESULTS
The motivation for this j.w,er was the use of gemetric considerations in the development and

impemenaion of blending gorimms. As was indicated earlier, such consutims have typically not
bee incorporated into the blending portions of solid modeling systs The geometrical constrain that
we have coinside here is minizing the surface area of a blending surface. This minimization of
surface ma was approximated by the use of a solution to the minimal surface equation (2.1) and a
solution of the equtio was called a minimal surface.

The simplest method of generaing minimal surfaces was presented and examination of the
method indicated some previc... unknown degrees of freedom in the minimal surfaces The effect of
certain combinaticms of these degrees of freedom on the surfaces was indicated by several examples.

The results here can be incorporated into a solid modeling system in the following manner. The
user specifies the solids to be '.ended and (if desired) the curves on the solids through which the
required blend is to pas. The user then selects the type of fundamental blending surface: Ennev,
catmeoid, JoreMeeks, Chen. etc. The choice is made according to the experience of the use in actu-
ally using the particular surfaces. The user then selects the appropriate degrees of freedom (a..f in the
coe of Enneper's surface) and selects values from a valuator device. The blends are then sketched
using a large value of the increment so as to be able to rapidly reject any obviously inappropriae
blends.

The nnber of degrees of freedom is considerably less than the number of degrees of freedom in
general even for low degree surfaces Salmon described 23 *species" for the general surface of degree 3
which of course has many coefficients. The situation is much worse for surfaces of degree 4 and hence
our method makes the problem much more tractable by limitin the choices. The number of degrees of
freedom can ofte be reduced even more using our method by noting that certain of the paamr
represent rotation and scaling of the surface (e and f in Enneper's surface) and that not all pameters
can be 0. The small number of degrees of freedom is appropriate for matching the blending surface to
the values of specific points on die surfaces to be blended.

7. OPEN PROBLEMS
The analysis given here concentrates on minimal surfaces which blend together two given sur-

faces. No requirement has been ms' e of tangency to the given surfaces. Incorporation of tangency
information would require use of k..agrange multipliers in the analysis. It is expected that the blending
surfaces will only approximate the actual tangency except in rare circumstances where the tangency is
exact. The primary concern o: wus paper was the use of blendivg surfaces which minimized surface
area. However, in a typical milling operation, the volume of excess material is also important (espe-
cially if the material is expensive).

Minimizing volume is generally impossible unless the blending surface actually follows the sur-
faces to be blended exactly, in which case use of a blending algorithm is obviously pointless. It is pos-
sible to consider volume minimization over all surfaces of a fixed degree, both with or without con-
sideration of tangency to the surfaces to be blended. We intend to retain to this subject in a future
paper.

The blending'surfaces described in this paper have relatively simple parametric represetitations
yet lead to implicit equations of very large algebraic degree or to non-algebraic su"'aces. It would be
useful to be able to obtain a mL nal surface of low algebraic degree or to vmfy thaL none are possible.
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languages taught to seniors and

EXPERIENCES TEACHING graduate students at Howard. The
CONCURRENCY IN ADA undergraduate students were majoring

in Computer Systems Engineering and

Ronald J. Leach the graduate students were majoring in
Department of Systems and Computer Science; all students were

Computer Science majoring in the School of
School of Engineering Engineering. All studerts were
Howard University proficient in the languages FORTRAN,
Washington, D.C. 20059 Pascal, and C before beginning the

study of Ada. In addition, many of
them were exposed to a %ariety of

ABSTRACT other languages including LISP,
PROLOG, or PL/l.

Many students have great The topic of concurrent
difficulty understanding concurrent programming was introduced by means of
programming at anything but the most some standard examples. The notion of
superficial level. In this paper, we Petri net was presented and used as a
describe some experience teaching framework for the discussion of
concurrent programming in Ada and give concurrency in tasking. No other more
some suggestions for implementing the formal model of concurrency was used.
ideas discussed here. This method of presentation is in

agreement with the philosophy in [1]
and [2].

1. INTRODUCTION: The Ada environment at Howard is
The concept of concurrent not conducive to the development of

programming is one of the most large Ada programs. Most of the Ada
difficult ones for students to assignments are done on a Digital
understand. In general, upper level Equipment Corporation VAX 1/780 with
students bave a good understanding of 4MB of main memory which runs under
structured design, analysis of % VMS. The "compiler" is the classic
algorithms, and a rudimentary NYU AdaEd. Because of the size of the
knowledge of software engineering, working set needed for compilation
Such students generally are proficient under this compiler, students were
in several diferent programming encouraged to submit jobs for batch
languages that are used for sequential processing. Interactive compilations
programs. In this paper, we describe and executions were limited to one
some experiences when having students terminal at a time, since working sets
learn about concurrent programming by of 2MB were allocated to Ada
writing programs in Ada. While the processes. In addition, students
environment we describe is specific to learned Ada syntax by writing small
a particular course at Howard Ada programs using the limited Janus
University, many of the experiences Ada on personal computers. There were
encountered can be carried over to 21 students in the class. A much
other environments, larger class would have been

unmanageable for this project. Note
however that the assignment of

2. THE ENVIRONMENT: different projects eltminated the
The course in question was an propagation of correct solutions since

advanced course in programming each of the students had a tasking

vii.5-40



synchronization problem that was at Student's observations on this
least superficially different from point were interesting. In spite of
that of the other students.- several lectures on timing and

synchronization of tasks, lengthy
discussions on the nature of an Ada

3. THE PROJECTS: "logical processor", and numerous
The students were each assigned a classroom examples, students did not

project for which they were required believe that programs could give
to write Ada programs which involved different results or bomb when given
at least two tasks. In general,the the same input. The sudden shock when
tasks embodied some simple idea that their program showed this behavior put
the students were very familiar with the point across better than any
at least in the case of sequential lecture could. Many of the students
progra.s. Thus the difficulty was in indicated that they had seen this kind
understanding the concurrency and not of error at some time during program
in the computation performed by the developiment. Two of the students were
individual task. so shocked by the different behaviour

As an example, one student was of the sample runs that they turned in
asked to write a program with two their projects with signatures of
tasks - sort an array of integers and vitnesses that their programs ran
then search for a key using a binary successfully, at least once.
search. The student was allowed to
use any sorting algorithm. Thus the
student did not have difficulty 4. CONCLUSIONS AND SUG ESTIONS FOR
implementing the individual algorithms IMPLEMENTATION
for the tasks. The troublesome part The students who had been through
was the implementation of the this assignment seemed to have a
synchronization or- communication of better understanding of concurrent
the tasks. tasking in Ada than did students in

Projects involving similar, but previous semesters. The assignment of
not identical problems in programs involving several (perhaps
synchronization were given to other trivial) tasks which needed to be
students. Some examples of these synchronized or communicated. This
assignments are: can be implemented in several ways.

1. Write a program which uses 1) Assign different projects to
two tasks to solve quadratic students (or to small groups of
equations using the quadratic students) requiring them to have at
formula. Each task must perform at least three or four runs of their
least three arithmetic operations. program.

2. Write a program to read an . 2) Assign the same project to
integer n and to have two tasks. The different students (or groups) and
tasks are to compute some simple have them compare sample runs on the
function f(n) and to find all primes same data. This should point out
less than f(n). difficulties in tasking.

3. Write a program to simulate 3) Write a program yourself to do
the donning of socks and shoes, one of the assignments given above.
Putting on socks and putting on shoes Don't think carefully about all
are to be separate tasks. possible orders of execution of the

4. Write a program to read an tasks. Your program is likely to havearray A of integers and to have two different outputs depending on the
tasks. The tasks are to sort the actual physical implementation of the
array A in increasing order passing tasks.
this sorted array to B and to sort the
array B in decreasing order. REFERENCES

1. Cherry, G., "Parallel ProgrammingClearly the major difficulty for in ANSI Standard Ada", Reston, Reston,
the students was the synchronization Va., 1984.
of tasks. Students were required to 2. GehaniN. "Ada : Concurrent
run their programs four times with the Programming", Prentice-Hall, Englewood
same input. Most of the errors in the Cliffs, N.J., 1984
Programs due to subtle assumptions
about tasking made by the programmer
became apparent after four runs.
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Technical Section

EVALUATING THE PERFORMANCE
OF A USER INTERFACE

RONALD J. LEACH
Department of Systems and Computer Science, School of Engineeing,

Howard University, Washington, D.C. 20059

Ahstuct-A considerable amount of research has been done in the area of humn-compuer inerction.
High quality human-computer intefacs are especially important when a pogram needs to perform in
nearly rel-time. In this paper, a particular buman-computer interfice is analyMd. The observation made
an abstacted aW generalized to problems in interfaces for pom control. Sped benchmarks for evaluation
of interfaces in a real-am or ne ar eal-time etting ar developed. We show that these bechmaurks ae more
usefal than general performance measun of computer systems for etimatig compute performanc. We
develop general guidelines for designing interfaces which satsfy wvm time constraints and determine to
what extent they follow generally accepted principles for interface design.

i. ?IrDoUCrtoN lowahip. The tenuhs an extended and genalized
A frequent use of computers is in the control of pro- greatly in the rest of the paper. Particular emphasis is
ceases. In many situatio processes that were con- given to the development of benchmarks (Section 3)
trolled by a group of individuals are now controlled and gudings for evaluating and pnredn perfor.
by one or more computers with human operators per- mance (Section 4). In general, we show how commonly
forming a monitoring function. The operator takes accepted principles of desip of human-compute in-
control only for short periods of time for testing or terfaces can be combined with specific design require-
when an emergency occurs The human-machine in- menu without significantly degrading performance in
terface is especially important in such a situation. many instans
Poorly designed systems produce operator boredom
and often cause operatr errors. At critical times, the 2. A TYPICAL ZXAMI
response time of a poorly designed system may be too A control room at the Goddard Space Flight Center
slow for effective process controL of NASA is responsible for the control and operation

There is a laWe and growing body of research on of many spacecraft A typical spacecraft sends back
human-computer interfaces, with some design prin- information to pound telemetry stations on a regular
ciples beginning to emerge. Much of the research in basis; the amount and type of information varies when
this area is baed either on laboratory expiments or certain experiments or pound tests we performed. This
is anecdotal and basd on observations of adherence telemetry information is then relayed to a pound
to general principles. See the article by Foley, Wallace computer system which consists of various processors
and Chan [11 for an excellent survey of research on dedicated to recording telemetry data sent back by a
the psychology of human-computer interaction with spacecraft executing applications programs and con-
emphasis on the area of computer graphics. trolling communications interfaces to various ote

Often the best user interfaces require extensive use devices. Generally, these pound computers have a
of computer graphics displays. Using graphics in the moderately heavy steady-state computing load, which
interface increases the load on the computer system is well understood at the time that a misson is planned.
and requires an expenditure for hardwar that ranges Them is considerable hardware redundancy, an appli.
from very small (personal computers) to quite lW cations processor is kept in reserve in cue of failure.
(high performance color gaphics workstations). Thus Because of the design requirements, any graphics must
the design of a user interface must take into account be done locally, with little or no load on the applications
several factors such as availability and cost of graphics computer Information about the control of the
hardware, demand on the computing system, and any spacecraft must be available to the control system
requirement for real-time performance, within two seconds, with ral-time response desiable.

There is also a lar and growing body of research Originally, a control center would have had many
measuring the performance of computer hardware and monochrome monitors displaying alphanumeric in-
software. Results in this area e often results in the formation. Redundancy was provided by having more
areas of computer architecture, analysis of algorithms, than one person look at the sme information. These
simulations, reliability models, or some combination displays created little demand on system resources.
of these areas. See (2], [3], [4], and (5 for typical results However, training of operators was slow and there was
in these areas. a relatively high rate of error and fatiue, even for ex-

In Section 2, we will briefly discuss the evolution of perienced operators. An operator must monitor many
several generations of a particular human-computer existing experiments and must initiate others in order
interface. This particular interface was studied by the to assure that the spacecraft is functioning property.
author at the Goddard Space Flight Center of NASA A Iarge amount of human factors research has been
while the author was on a NASA/ASEE Faculty Fel- applied to the design of control rooms. In particular,
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the use of graphics displays and color has had a pro- The only reasonable solution is to use a pow
nounced effect on operator training and efficiency. The graphics workstation with hardware matrix operations
current trend in control rooms is to provide more in- and many of the necessary algorithms in hardware.
formation to fewer operator/analysts by using color See (2], (31, and (13] for typical estimates of computer
computer graphics displays on CRTL See [61 and [7] load caused by three dimensional rotation.
for more information about the evolution and design 3 IVAQ.. ENCHMARKSof these dislays..gAU~ONO NI~J~A ROM

eof g his d aIn Section 2 of this paper, we discussed a control
Un of aph s displays in control ro esse s center as an example of a user interface and the en-

testing and control, and display of moving obects. vironment in which it is used. The evolution of user

Monitoring of proces includes plotting of two & interf= in this setting was dscusse We now turn

meional graphs. Typical gr s are p rlots of erve our attention to the evaluation of the performance of
levels of baheries or fuel consumption over time. general interfaces in a real time setting. In this section,
levelsrig of battees also elu su tin o ti. we discuss the hardware and software requirements ofMonitorngs of processes also includes showin8 COnii- interfaces with emphasis on benchmark progams. Our

urations of ground computer networks and availability primry emphasis on encmar Porfas. Ou

of various computers. This type of activity does primary emphasis is on evaluation of interface which

require state of the art graphics equipment. The pin- control la numbers of relatively static displays for

cipal need is for rapid screen updating and display of monitoring of processes or for testing and control. In-

stored graphical data. Current plans are to use IBM terfaces for display of the motion of complex objects

PC ATs with special graphics cards and storage devices will not be considered in tis paper.
forThe fir question to be considered is how we will

Testing and control involves operator/analysts de- be &We to sts the displays We assume that the logical

iing which tests to perform on a satellite or s . organization of the displays is hierarchical, with rela-

Control rooms for current nights use a touh tively few levels and a fairly large number of children

on a CRT display of a "command panel" which possible from each parent node. Results in 121, 11,

sents many of the options of tests to be run. These and 161 suggest that this is the most effective design for
-the menu selection.

command panels have evolved from alphanumeric te m e s election.
displays in which an operator typed in the test that We note that there are only a few possibilities forwas to be performed. There is some consideration of the storage of data for any display: as coilections of
saving exp nsive screen m ed by is sf- pixels in either compressed or uncompressed form or
tional tablets which have some of their commands else they can be stored as collections of insmactions to

a display processor. The various displays can be shown
pseset, as entire screens, portions of a screen in a window, or

The major ioues here are interface technology, e on several screens. Selections can be made from menus
of learning, and ease of use once the command system on
has been mastered. Touch screen technology provides that range from fixed and permanent as in the cas of

reasonably fast sensing at moderate cost. (256 by 256 hard-coded touch tablets to relatively fixed such as in

touch points and 50 points per second conversion rate touch panels on CRTs and finally to menus that aem

is a typical example [10].) Operator satisfaction with rarely visible as in pop-up or pull-down menu systems.

the ease of learning and use of this system ismb Only a few colors are needed for a color display of
Ant e idee tad a f touch sste is eferable monitoring and testing of processes. For example, re-Anecdotal evidence that a touch screen is preferable search at NASA indicates that 5 or 6 colors suffice for

to a light pen agrees with the findings of [ 1 and [ 12. control room use [6. Thin the major factors in using

We note that there is no need for expensive graphics bit mapped displays for monitoring and testing are

processors with huge display list memories in the case

of testing and controL The primary need is for input screen resolution, size of primary and secondary

devices and relatively inexpensive graphics wos- memory, speed of access of primary or secondary

tim s. memory, speed of screen updating, and of course the
nature of the displays and the way they are stored.

The mom atNA s in computer graphics in a Much of this information can be obtained from man-
control room at NASA is in the display of moving ufacture's specifications, at least to a first approxi-
objects such as the space shuttle. The simplest way to mation However, the performance of an interface also
display the shuttle involves using a wire frame model depnds on the speed of various input devices and the
with no removal of hidden lines. Adding the antennas, speed of eaios u can tecarg baydoos, ad rbot rms ompicats ~speed and ease with which a human user can interact.
carvO bay doors, and robot arms complicates the pi*- Thus the evaluation of the speed of an interface in a
ture so that hidden lines must be removed in order to control system which needs to approximate real time
make the picture useful Allowing for three dimensional ReIone cn best be estimated by a set of benchmark
rotation means that each vertex in the model of the ronas t
shuttle will require the multiplication of a vector by a To aid in the determination of actual running times
matrix. For a reasonably useful wire frame drawing, of the various portions of a user interface, we will use
this will use up approximately one half of the cpu time
of a minicomputer such as a VAX 11/780, which is a notation similar o but not identical to that of (4]:
completely unsatisfactory. Using color graphics rep- c - time to draw a circle,
resentation of solid objects with hidden surface removal p(j) time to draw a polygon withj sides (j> I),
and some shading greatly increases the computing load. t - time to draw a character,
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any of the above symbols followed by anfdenotes the SEARCH which are related to the actual selection of
time to fill the object (to fill a character means to fill a display. We will use the formula
the smallest rectangle defining the character).

Finally, we denote the time to write a segment S as TIME - (LEVEL + l).SEARCHTIME(S)

to represent the time to write a display to the see.
TIME(S) - sum of all (c +p + I + cf+ pf+ tf) Here SEARCH represents the time for searching a

menu and either selecting the desired objec for viewing
for all objects in S. or determining that the object is not present. LEVEL

will serve as a counter for the length of the path from
the root of the tree to the menu for the desired display.

Iotaln t1, dorm la were psentediforpasing W By convention, the length of a path from the root tototal time to display all posible displays in a large itef s0

scale system for monitoring and proem control In tse is 0m

that paper, we were interested in the way that thew Thes benchmark are in the form of peudooode
times ame modified when a display is stored as a segment program which will be grouped into sets of thmo as
in a structured display file. has to be searched for in a follows. The first three programs show the speed of
tin a sctuedondisay file, ha s to be rcdmord replacing a scren of text by another screen of text.
tres in secondary storae, or needs to be compiled. These programs will use a procedure TEXTSCREEN
Our goal here is diffnt, se we are interested in which will write 20 lines of 40 characters each. The
the inteface rather than the speed of riewiting displays, command SYSTEM(TIME) will provide the elaped
Thus we will ignore the factors DFILE (used for seW time ince the last call to SYSTEM(TIME). The next
merts in a structured display file), SECFILE (for e- set of three programs will be obtained from the first
ondary store), or COMPILE (for compiling a seg- set by changing graphics instead of text. The last two
ment). We will need to use the factors LEVEL cad sets will duplicate the first two sets in a window envi-

ronment

PROGRAM REPLACE.-TEXT;
(s TIME FOR UPDATING OF TEXT PAGE WITH NO INPUT.)
BEGIN
TEXTSCREEN;
OLDTIME : SYSTEM(TIME);
FOR I:- I TO 1001DO

BEGIN
CLEAR;
TEXTSCREEN;
END;

NEWTIME :- SYSTEM(TIME),
TEXTTIME :- ( NEWTIME - OLDTIME )I 100;
RETURN(TEXTTIME);
END.

PROGRAM SEARCH..REPLACETEXT;
(* TIME FOR UPDATING OF TEXT PAGE USING SELECTING DEVICE.)
BEGIN
TEXTSCREEN;
OLDTIME : SYSTEM(TIME);
FOR I:- I TO 100 DO

BEGIN
SEARCHMENU;
CLEAR;
DISPLAY-SELECTEDTEXTSCREEN;
EN%

NEWIME :- SYSTEM(TIME) - OLDTIME;
SEARCH :- (NEWTIME - OLDTIME ) / 100 - TEXTTIME;
RETURN(SEARCH);
END.

Here SEARCHMENU is obtained empirically by having a user make a selection from the appropriate menus.
We expect that the running time of the two programs given above will be very close. Any lr differece
indicates that the effective time used by the selection process is large. (We are assuming that the looping itself
takes negligible time. Obvious modifications can be made if this is not the case.)
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PROGRAM TREL.SEARCIL.REPLACE-TEXT ;
(e TIME FOR UPDATING TEXT PAGE WITH SELECTING DEVICE AND
SEARCHING THE TREE OF MENUS)
BEGIN
TEXTSCREEN;
HEIGHT:- 10;
OLDTIME :- SYSTEM(TIME);
FOR!I:- I TO 100 DO

FOR J:- 1 TO HEIGHT DO
BEGIN
SEARCH[MENU;
CLEAR,
DISPIAY-SELECTED..TEXTSCREEN;
CHANGE-LEVEL,
END:

NEWTIME :- SYSTEM(TIME),
LEVEL :- ( NEWIME - OLDTIME ) / (100 * HEIGHT)

- ( SEARCH + TEXT-.TIME ) / HEIGHT;
RErURN(LEVEL);
END.

A call to the procedure CHANGELIEVEL involves the changing of menus to a menu for a new level of the
menu tree.

The next set of three programs determines a typical time for updating graphics displays. Thewe programs are
obtained from the first set by replacing "TEXTSCREEN' by "GRAPICSSCREEN"; the details will be
omitted.

The rematining two sets of three benchmark programs will measure the efficiency of interfaces in a window
environment. Basic concerns here are measurement of the behavior of the window updating system and of the
selection devices when the system is under heavy load. Concerns about staionary, pop-up, and pull-down
menus, screen layout; and shortcuts through the tree structure hierarchy to frequently used menu items will be
postponed to Section 4.

As before, we will presenit the programs for the updating of text windows and merely indicate the modification
necessary for having graphics displays in windows.

PROGRAM REPLACL..WINDOW...TEXT;
(*.UPDATE TEXT DISPLAYS IN VARIOUS WINDOWS.
BEGIN
GET.WINDOW...ENVIRONMENT;
SELECT-.WINDOW;
CLEAR,
TEXTSCREEN;
OLDTIME :- SYSTEM(TIME);
FOR I:-. I TO 100ODO

BEGIN
SELECL..WINDOW;
CLEAR
TEXTSCREEN;
END;

NEWTIE:- SYSTEM(TIME);
WINDOW...TEXT.TIME :- (NEW'TIME - OLDTIME ) /100;
RETURN (WINDOW-..TEXT-.TIME),
END.

PROGRAM SEARCH-...EPLACL.WINDOW...TEXT;
(e USE SELECTION DEVICE; REPLACE TEXT IN WINDOW.
BEGIN
GET-.WINDOW-..ENVIRONMENT;
SELECT-..WINDOW;
CLEAR;
TEXTSCREEN;
OLDTIME : SYSTEM(TRME);
FOR I:- I TO 100 DO
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BEGIN
SEARCH;
SET.ECTWINDOW;
CLEAR;
TEXTSCREEN;
END;

NEWTIME :- SYSTEM (TIME);
WINDOWSEARCH :- (NEWTIME - OLDTIME) / 100 - WINDOWTEXTTIME;
RETURN (WIND0W..SEARCH);
END.

PROGRAM TREE-SEARCHREPLACEWINDOWFTEXT;
(e CHANGE LEVELS OF MENU SELECTION TREE ; SELECT MENU ITEM;

REP.ACE TEXT SCREEN IN A WINDOW ENVIRONMENT e)
BEGIN
GETWINDOWENVIRONMENT;
SELEC!TWINDOW;
CLEAR;
TEXTSCREEN;
HEIGHT :- 10;
OLDTIME :- SYSTEM(TIME);
FOR I:- I TO 100DO

FOR J:- I TO HEIGHT DO
BEGIN
SEARCH;
SELECT...WINDOW;
CLEAR;
TEXTSCREEN;
CHANGE.LEVEL;
END;

NEWTIME :- SYSTEM(TIME);
WINDOW..JEVEL :- ( NEWTIME - OLDTIME ) /(100 * HEIGHT)

- ( WINDOWSEARCH + WINDOW-TE.XTTIME ) / HEIGHT;
RETURN (WINDOWLEVEL);
END.

The remaining three programs are obtained
by replacing "TEXTSCREEN" by "GRAPHICS- the design of the interface is logically independent of
SCREEN." These programs sugest how a set of the design of the data storage and rieval algorithms

I-nchmarks can be written for the evaluation of the we restrict our attention to a constant MAX-TIME
real-time performance of an interface. As such, our which is the maximum time that any response of the
viewpoint is different from that of [5] where the main inerface can have. Clearly,
concern is the evaluation of overall window updating
speed, rather than the selection process.

These benchmark programs produce the values of MAX-TElE + RETRIEVALTIME
SEARCH and LEVEL as described above. They also - ABSOLUTETIMELIMIT.
give the values of WINDOWSEARCH and WIN.
DOW..LEVEL, which describe the same quantities in If
a window environment. We will use these values in
Section 4.

RETRIEVAL..TIME
4 EVALUATION OF AN UnrWACL ANALYSN

We now use the quantities SEARCH, LEVEL, > ABSOLUTLTIMLLIMIT,
WINDOW-SEARCH, and W[NDOW4LEVEL to
analyze the performance of interfaces for monitoring then no interface is possible that meets the required
of processes and for testing and control Since we are conditions and the hardware and software require-
considering only the case of interfaces in a real-time ments for the project must be changed. From this point
environment, we assume the existence of an external on, we assume that some interface is possible within
quantity called ABSOLUTE..TIML.IMT which the constraint of MAXTIME. We also assume:
represents the maximum time that is available for all 1. Some portion of the interface requires graphics.
of the computer operations including the action of the 2. The chosen display hardware and software permit
interface and the retrieval and display of data. Since mixed text and graphics with a variety of input devices.
CAG 11:2-P
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3. That this mixtur is available both within a win- also sumst that only stationary or pull-down menus
dow management system and outside it. be used for clarity.

4. SEARCH < WIN W...SEARCHL 5. Not all operations in the monitoring of Prnocessesm
5. LEVEL <WINDOW..LEVEL- or testing and control need be caried out in real-time.
Assume that there is a total of M options available Those operations should be on the bottom level of the

from menus and that the menus are arranged hierar- tree so as to allow faster traversals of the tree in most
chically. Then the two extremes of each node of the cum.
tree (except the last) having one child and the root 6. Use an additional huma-n operator to reduce the
having Mf -1 children correspond to times of M * load on the interface by a fasctor of 2.
LEVEL and M * SEARCH, respectively. If each of 7. Revise the undertying hardware and software
these numbers is smaller than MAX..TIME, then every These guidelines should not be considered complete

aragement of menus ns feasible from a real-time per- but instead as suusis for actons when an interface
formanc viewpoint and only human factors consid- for real-time activity is predicted to be overloaded.
erations need be considered. A similar statement holds &. jthAY
for WINDOW...LEVEL and WINDOW-.SEARCH. In this note, we have described an example of a use
We thus restrict our attention to the case that at leas interface for monitoring of processes; testing and con-
one of trol; and display of three dimensional motion and how

Me LEVEL> MAX-.TRACE, (1) it evolved over time. The problems encountered there
were abstracted and generalized in order to develop a

Ms SEARCH > MAXLTIME, (2) gnrlmodel for the analysis of the performance of

Me WINDOW...EVEL> MAX..TIM (3) human computer interfaces for program which are
M*VADOW SEACH>M~r-IME (4) used for monitoring of processes and for testing and

MeWNO .. ERH 0A.TM 4 control. Emphasis was given to specific benchmarks
and guidelines for the design and evaluation of "real-

is true. Note that we make no assumption about which time" interfaces, rather than the general performance
of LEVEL and SEARCH or which of INDW measurements often used [5].
-..LEVEL and WDW...SEARCH is larger. RFRO
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